Особенности жизнедеятельности и самочувствия студентов медицинских вузов в период дистанционного обучения во время эпидемии COVID-19

IF 0.7 Q3 EDUCATION & EDUCATIONAL RESEARCH Psikhologicheskaya Nauka i Obrazovanie-Psychological Science and Education Pub Date : 2021-01-01 DOI:10.17759/PSE.2021260304
Е. А. Потапова, Земляной Д.А, Г. В. Кондратьев
{"title":"Особенности жизнедеятельности и самочувствия студентов медицинских вузов в период дистанционного обучения во время эпидемии COVID-19","authors":"Е. А. Потапова, Земляной Д.А, Г. В. Кондратьев","doi":"10.17759/PSE.2021260304","DOIUrl":null,"url":null,"abstract":"With the ongoing COVID-19 pandemic decreasing availability of polymerase chain reaction with reverse transcription and the snowballing growth of medical imaging, especially the number of chest computed tomography (CT) scans being performed, methods to augment and automate the image analysis, increasing productivity and minimizing human error are of particular importance. The creation of high-quality datasets is essential for the development and validation of artificial intelligence al-gorithms. Such technologies have sufficient accuracy in diagnosing COVID-19 in medical imaging. The presented large-scale dataset contains anonymized human CT scans with COVID-19 features as well as normal studies. Some studies were tagged by radiologists using binary pixel masks of regions of interest (e.g., characteristic areas of consolidation and ground-glass opacities). CT data were acquired between March 1, 2020, and April 25, 2020, and provided by municipal hospitals in Moscow, Russia. The presented dataset is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0).","PeriodicalId":55959,"journal":{"name":"Psikhologicheskaya Nauka i Obrazovanie-Psychological Science and Education","volume":"26 1","pages":"70-81"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psikhologicheskaya Nauka i Obrazovanie-Psychological Science and Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17759/PSE.2021260304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 4

Abstract

With the ongoing COVID-19 pandemic decreasing availability of polymerase chain reaction with reverse transcription and the snowballing growth of medical imaging, especially the number of chest computed tomography (CT) scans being performed, methods to augment and automate the image analysis, increasing productivity and minimizing human error are of particular importance. The creation of high-quality datasets is essential for the development and validation of artificial intelligence al-gorithms. Such technologies have sufficient accuracy in diagnosing COVID-19 in medical imaging. The presented large-scale dataset contains anonymized human CT scans with COVID-19 features as well as normal studies. Some studies were tagged by radiologists using binary pixel masks of regions of interest (e.g., characteristic areas of consolidation and ground-glass opacities). CT data were acquired between March 1, 2020, and April 25, 2020, and provided by municipal hospitals in Moscow, Russia. The presented dataset is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医疗机构学生在远程学习期间的生活和健康状况的特点
随着持续的COVID-19大流行减少了逆转录聚合酶链反应的可用性,以及医学成像的滚雪球式增长,特别是正在进行的胸部计算机断层扫描(CT)扫描的数量,增强和自动化图像分析,提高生产力和最大限度地减少人为错误的方法尤为重要。高质量数据集的创建对于人工智能算法的开发和验证至关重要。这些技术在医学影像诊断COVID-19方面具有足够的准确性。所提出的大规模数据集包含具有COVID-19特征的匿名人类CT扫描以及正常研究。一些研究由放射科医生使用感兴趣区域(例如,实变和磨玻璃不透明的特征区域)的二元像素掩模进行标记。CT数据采集时间为2020年3月1日至2020年4月25日,由俄罗斯莫斯科市立医院提供。本文采用知识共享署名-非商业性-无衍生3.0 Unported (CC by - nc - nd3.0)授权。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
37.50%
发文量
31
审稿时长
12 weeks
期刊最新文献
Efficiency of Collaborative Computer Problem Solving by the Students of Adolescence and Youth: The Contribution of Social Intelligence Using Process Data of Task Performance in Creative Thinking Assessment Determinants of Blended Teaching-Learning Performance in New Normal Environment: Exploring the Role of Teachers' Technostress as Mediation Formation of Methodological Readiness of Undergraduates of the Psychological and Pedagogical Direction for Mediation in Conditions of Blended Learning Digital Literacy, Cognitive Control and Student Use of Digital Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1