{"title":"Portfolio selection with marginal risk control","authors":"Shushang Zhu, Duan Li, Xiaoling Sun","doi":"10.21314/JCF.2010.213","DOIUrl":null,"url":null,"abstract":"Marginal risk that represents the risk contribution of an individual asset is an important criterion in portfolio selection and risk management. In the literature, however, the measure of marginal risk has been only employed in ex post analysis of a portfolio policy, and the control of marginal risk is achieved usually via position diversification that simply imposes upper bounds on the portfolio position without considering the effect of correlations of asset returns in risk diversification. We investigate in this paper a new optimal portfolio selection problem with direct (relative) marginal risk control in the mean-variance framework, accounting for the correlations of asset returns. The resulting optimization model, however, is a notorious non-convex quadratically constrained quadratic programming problem. By exploiting the special structure of the problems, we propose an efficient branch-and-bound solution method to achieve a global optimality in which convex quadratic relaxation subproblems with second-order cone constraints are formulated to generate a tight lower bound. Empirical study shows that the model with marginal risk control is a suitable analytical tool for active portfolio risk management and demonstrates several preferable features of this new model to the traditional mean-variance model in risk management. The method is tested and compared with the commercial global optimization solver BARON for portfolio optimization problems with up to hundreds of assets and tens of marginal risk constraints.","PeriodicalId":51731,"journal":{"name":"Journal of Computational Finance","volume":"14 1","pages":"3-28"},"PeriodicalIF":0.8000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/JCF.2010.213","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 24
Abstract
Marginal risk that represents the risk contribution of an individual asset is an important criterion in portfolio selection and risk management. In the literature, however, the measure of marginal risk has been only employed in ex post analysis of a portfolio policy, and the control of marginal risk is achieved usually via position diversification that simply imposes upper bounds on the portfolio position without considering the effect of correlations of asset returns in risk diversification. We investigate in this paper a new optimal portfolio selection problem with direct (relative) marginal risk control in the mean-variance framework, accounting for the correlations of asset returns. The resulting optimization model, however, is a notorious non-convex quadratically constrained quadratic programming problem. By exploiting the special structure of the problems, we propose an efficient branch-and-bound solution method to achieve a global optimality in which convex quadratic relaxation subproblems with second-order cone constraints are formulated to generate a tight lower bound. Empirical study shows that the model with marginal risk control is a suitable analytical tool for active portfolio risk management and demonstrates several preferable features of this new model to the traditional mean-variance model in risk management. The method is tested and compared with the commercial global optimization solver BARON for portfolio optimization problems with up to hundreds of assets and tens of marginal risk constraints.
期刊介绍:
The Journal of Computational Finance is an international peer-reviewed journal dedicated to advancing knowledge in the area of financial mathematics. The journal is focused on the measurement, management and analysis of financial risk, and provides detailed insight into numerical and computational techniques in the pricing, hedging and risk management of financial instruments. The journal welcomes papers dealing with innovative computational techniques in the following areas: Numerical solutions of pricing equations: finite differences, finite elements, and spectral techniques in one and multiple dimensions. Simulation approaches in pricing and risk management: advances in Monte Carlo and quasi-Monte Carlo methodologies; new strategies for market factors simulation. Optimization techniques in hedging and risk management. Fundamental numerical analysis relevant to finance: effect of boundary treatments on accuracy; new discretization of time-series analysis. Developments in free-boundary problems in finance: alternative ways and numerical implications in American option pricing.