{"title":"Estimating multiple option Greeks simultaneously using random parameter regression","authors":"Haifeng Fu, Xing Jin, G. Pan, Yanrong Yang","doi":"10.21314/JCF.2012.241","DOIUrl":null,"url":null,"abstract":"The derivatives of option prices with respect to underlying parameters are commonly referred to as Greeks, and they measure the sensitivities of option prices to these parameters. When the closed-form solutions for option prices do not exist and the discounted payoff functions of the options are not sufficiently smooth, estimating Greeks is computationally challenging and could be a burdensome task for high-dimensional problems in particular. The aim of this paper is to develop a new method for estimating option Greeks by using random parameters and least-squares regression. Our approach has several attractive features. First, just like the finite-difference method it is easy to implement and does not require explicit knowledge of the probability density function and the pathwise derivative of the underlying stochastic model. Second, it can be applied to options with discontinuous discounted payoffs as well as options with continuous discounted payoffs. Third, and most importantly, we can estimate multiple derivatives simultaneously. The performance of our approach is illustrated for a variety of examples with up to fifty Greeks estimated simultaneously. The algorithm is able to produce computationally efficient results with good accuracy.","PeriodicalId":51731,"journal":{"name":"Journal of Computational Finance","volume":"16 1","pages":"85-118"},"PeriodicalIF":0.8000,"publicationDate":"2012-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/JCF.2012.241","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 4
Abstract
The derivatives of option prices with respect to underlying parameters are commonly referred to as Greeks, and they measure the sensitivities of option prices to these parameters. When the closed-form solutions for option prices do not exist and the discounted payoff functions of the options are not sufficiently smooth, estimating Greeks is computationally challenging and could be a burdensome task for high-dimensional problems in particular. The aim of this paper is to develop a new method for estimating option Greeks by using random parameters and least-squares regression. Our approach has several attractive features. First, just like the finite-difference method it is easy to implement and does not require explicit knowledge of the probability density function and the pathwise derivative of the underlying stochastic model. Second, it can be applied to options with discontinuous discounted payoffs as well as options with continuous discounted payoffs. Third, and most importantly, we can estimate multiple derivatives simultaneously. The performance of our approach is illustrated for a variety of examples with up to fifty Greeks estimated simultaneously. The algorithm is able to produce computationally efficient results with good accuracy.
期刊介绍:
The Journal of Computational Finance is an international peer-reviewed journal dedicated to advancing knowledge in the area of financial mathematics. The journal is focused on the measurement, management and analysis of financial risk, and provides detailed insight into numerical and computational techniques in the pricing, hedging and risk management of financial instruments. The journal welcomes papers dealing with innovative computational techniques in the following areas: Numerical solutions of pricing equations: finite differences, finite elements, and spectral techniques in one and multiple dimensions. Simulation approaches in pricing and risk management: advances in Monte Carlo and quasi-Monte Carlo methodologies; new strategies for market factors simulation. Optimization techniques in hedging and risk management. Fundamental numerical analysis relevant to finance: effect of boundary treatments on accuracy; new discretization of time-series analysis. Developments in free-boundary problems in finance: alternative ways and numerical implications in American option pricing.