Study of the effect of ultrasonic treatment on mineral materials of different morphologies

Q2 Materials Science Minerals & Metallurgical Processing Pub Date : 2016-05-01 DOI:10.19150/MMP.6626
V. Singh, R. Venugopal, V. K. Saxena, A. K. Mukherjee
{"title":"Study of the effect of ultrasonic treatment on mineral materials of different morphologies","authors":"V. Singh, R. Venugopal, V. K. Saxena, A. K. Mukherjee","doi":"10.19150/MMP.6626","DOIUrl":null,"url":null,"abstract":"Coal, iron and manganese ore samples were exposed to different ultrasonic intensities of 250, 300 and 350 W/L for five minutes and to an ultrosonic intensity of 270 W/L for different time durations of 3, 5 and 7 minutes. The ultrasonically treated samples showed reductions in D80 particle diameters of 6 percent for the coal samples, 5.95 percent for the iron ore samples and 35.63 percent for the manganese ore samples during grinding. The ultrasonic treatment was also observed to assist in reducing ash content in the coal product by 8 percent and to reduce manganese losses in rejects by about 5 percent. Ultrasonic treatment was concluded to be capable of assisting in the comminution of friable ores more prominently than the hard and porous materials.","PeriodicalId":18536,"journal":{"name":"Minerals & Metallurgical Processing","volume":"33 1","pages":"88-96"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.19150/MMP.6626","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals & Metallurgical Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19150/MMP.6626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

Abstract

Coal, iron and manganese ore samples were exposed to different ultrasonic intensities of 250, 300 and 350 W/L for five minutes and to an ultrosonic intensity of 270 W/L for different time durations of 3, 5 and 7 minutes. The ultrasonically treated samples showed reductions in D80 particle diameters of 6 percent for the coal samples, 5.95 percent for the iron ore samples and 35.63 percent for the manganese ore samples during grinding. The ultrasonic treatment was also observed to assist in reducing ash content in the coal product by 8 percent and to reduce manganese losses in rejects by about 5 percent. Ultrasonic treatment was concluded to be capable of assisting in the comminution of friable ores more prominently than the hard and porous materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声处理对不同形态矿物材料的影响研究
煤、铁和锰矿石样品在250、300和350 W/L不同超声强度下暴露5分钟,在270 W/L不同超声强度下暴露3、5和7分钟。经超声处理后的煤、铁矿和锰矿在磨矿过程中D80颗粒直径分别减少了6%、5.95%和35.63%。超声波处理也被观察到有助于减少煤产品中8%的灰分含量和减少废物中约5%的锰损失。超声处理对易碎矿石的粉碎作用比对坚硬和多孔材料的粉碎作用更显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Minerals & Metallurgical Processing
Minerals & Metallurgical Processing 工程技术-矿业与矿物加工
CiteScore
0.84
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: For over twenty-five years, M&MP has been your source for the newest thinking in the processing of minerals and metals. We cover the latest developments in a wide range of applicable disciplines, from metallurgy to computer science to environmental engineering. Our authors, experts from industry, academia and the government, present state-of-the-art research from around the globe.
期刊最新文献
Pressure leaching of copper concentrates at Morenci, Arizona — 10 years of experience Effect of microwave treatment on the surface properties of chalcopyrite Effects of cake thickness and pressure on the filtration of coal refuse slurry Direct sulfuric acid leaching of zinc sulfide concentrate using ozone as oxidant under atmospheric pressure Validation of electrolyte conductivity models in industrial copper electrorefining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1