{"title":"Copy-Move Forgery Verification in Images Using Local Feature Extractors and Optimized Classifiers","authors":"S. B. G. Tilak Babu;Ch Srinivasa Rao","doi":"10.26599/BDMA.2022.9020029","DOIUrl":null,"url":null,"abstract":"Passive image forgery detection methods that identify forgeries without prior knowledge have become a key research focus. In copy-move forgery, the assailant intends to hide a portion of an image by pasting other portions of the same image. The detection of such manipulations in images has great demand in legal evidence, forensic investigation, and many other fields. The paper aims to present copy-move forgery detection algorithms with the help of advanced feature descriptors, such as local ternary pattern, local phase quantization, local Gabor binary pattern histogram sequence, Weber local descriptor, and local monotonic pattern, and classifiers such as optimized support vector machine and optimized NBC. The proposed algorithms can classify an image efficiently as either copy-move forged or authenticated, even if the test image is subjected to attacks such as JPEG compression, scaling, rotation, and brightness variation. CoMoFoD, CASIA, and MICC datasets and a combination of CoMoFoD and CASIA datasets images are used to quantify the performance of the proposed algorithms. The proposed algorithms are more efficient than state-of-the-art algorithms even though the suspected image is post-processed.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"6 3","pages":"347-360"},"PeriodicalIF":7.7000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/10097649/10097650.pdf","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/10097650/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 9
Abstract
Passive image forgery detection methods that identify forgeries without prior knowledge have become a key research focus. In copy-move forgery, the assailant intends to hide a portion of an image by pasting other portions of the same image. The detection of such manipulations in images has great demand in legal evidence, forensic investigation, and many other fields. The paper aims to present copy-move forgery detection algorithms with the help of advanced feature descriptors, such as local ternary pattern, local phase quantization, local Gabor binary pattern histogram sequence, Weber local descriptor, and local monotonic pattern, and classifiers such as optimized support vector machine and optimized NBC. The proposed algorithms can classify an image efficiently as either copy-move forged or authenticated, even if the test image is subjected to attacks such as JPEG compression, scaling, rotation, and brightness variation. CoMoFoD, CASIA, and MICC datasets and a combination of CoMoFoD and CASIA datasets images are used to quantify the performance of the proposed algorithms. The proposed algorithms are more efficient than state-of-the-art algorithms even though the suspected image is post-processed.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.