{"title":"Schema processing under proportional selection in the presence of random effects","authors":"D.B. Fogel;A. Ghozeil","doi":"10.1109/4235.687889","DOIUrl":null,"url":null,"abstract":"Traditional selection in genetic algorithms has relied on reproduction in proportion to observed fitness. This method of selection devotes samples to the observed schemata in a form described by the well known schema theorem. When schema fitness takes the form of a random variable, however, the expected number of samples from extant schemata may not be described by the schema theorem and varies according to the specific random variables involved.","PeriodicalId":13206,"journal":{"name":"IEEE Transactions on Evolutionary Computation","volume":"1 4","pages":"290-293"},"PeriodicalIF":11.7000,"publicationDate":"1997-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/4235.687889","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/687889/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 46
Abstract
Traditional selection in genetic algorithms has relied on reproduction in proportion to observed fitness. This method of selection devotes samples to the observed schemata in a form described by the well known schema theorem. When schema fitness takes the form of a random variable, however, the expected number of samples from extant schemata may not be described by the schema theorem and varies according to the specific random variables involved.
期刊介绍:
The IEEE Transactions on Evolutionary Computation is published by the IEEE Computational Intelligence Society on behalf of 13 societies: Circuits and Systems; Computer; Control Systems; Engineering in Medicine and Biology; Industrial Electronics; Industry Applications; Lasers and Electro-Optics; Oceanic Engineering; Power Engineering; Robotics and Automation; Signal Processing; Social Implications of Technology; and Systems, Man, and Cybernetics. The journal publishes original papers in evolutionary computation and related areas such as nature-inspired algorithms, population-based methods, optimization, and hybrid systems. It welcomes both purely theoretical papers and application papers that provide general insights into these areas of computation.