Passive Indoor Tracking Fusion Algorithm Using Commodity Wi-Fi

Q3 Decision Sciences Journal of ICT Standardization Pub Date : 2023-01-01 DOI:10.13052/jicts2245-800X.1111
Wei Han;Shenggang Wu
{"title":"Passive Indoor Tracking Fusion Algorithm Using Commodity Wi-Fi","authors":"Wei Han;Shenggang Wu","doi":"10.13052/jicts2245-800X.1111","DOIUrl":null,"url":null,"abstract":"Recent studies have found the mapping relationship between channel state information used in commercial Wi-Fi devices and environmental changes in the indoor environment, which can be used for sensing purposes. With the advantages of low cost and wide deployment of Wi-Fi facilities, passive indoor tracking systems based on Wi-Fi have huge potential. This article proposes and builds a passive indoor tracking system using commercial Wi-Fi devices, which realizes the function of tracking the human body's trajectory in indoor environment. The system uses only commercial Wi-Fi devices. It processes the collected channel state information data by sending and receiving two pairs of Wi-Fi devices, and extract the movement information the messy data to obtain the trajectory of the human body. The system conducts a geometric feature analysis in the complex plane to obtain accurate displacement information, and utilize a fusion algorithm, combining the AoA (Angle of Arrival) information obtained by MUSIC algorithm, to obtain accurate human trajectory. In the experiment, the complex plane geometric feature analysis algorithm reaches centimeter-level accuracy in obtaining displacement information, while the system reaches decimeter-level accuracy on in obtaining indoor human trajectory on a simulation dataset.","PeriodicalId":36697,"journal":{"name":"Journal of ICT Standardization","volume":"11 1","pages":"1-26"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/10251929/10261463/10261465.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Standardization","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10261465/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies have found the mapping relationship between channel state information used in commercial Wi-Fi devices and environmental changes in the indoor environment, which can be used for sensing purposes. With the advantages of low cost and wide deployment of Wi-Fi facilities, passive indoor tracking systems based on Wi-Fi have huge potential. This article proposes and builds a passive indoor tracking system using commercial Wi-Fi devices, which realizes the function of tracking the human body's trajectory in indoor environment. The system uses only commercial Wi-Fi devices. It processes the collected channel state information data by sending and receiving two pairs of Wi-Fi devices, and extract the movement information the messy data to obtain the trajectory of the human body. The system conducts a geometric feature analysis in the complex plane to obtain accurate displacement information, and utilize a fusion algorithm, combining the AoA (Angle of Arrival) information obtained by MUSIC algorithm, to obtain accurate human trajectory. In the experiment, the complex plane geometric feature analysis algorithm reaches centimeter-level accuracy in obtaining displacement information, while the system reaches decimeter-level accuracy on in obtaining indoor human trajectory on a simulation dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于商品Wi-Fi的被动室内跟踪融合算法
最近的研究发现,商用Wi-Fi设备中使用的信道状态信息与室内环境中的环境变化之间存在映射关系,可用于传感目的。基于Wi-Fi的无源室内跟踪系统具有成本低、部署范围广的优点,具有巨大的潜力。本文提出并构建了一个使用商用Wi-Fi设备的被动室内跟踪系统,实现了在室内环境中跟踪人体轨迹的功能。该系统仅使用商用Wi-Fi设备。它通过发送和接收两对Wi-Fi设备来处理收集到的信道状态信息数据,并从杂乱的数据中提取运动信息,以获得人体的轨迹。该系统在复杂平面中进行几何特征分析,以获得准确的位移信息,并利用融合算法,结合MUSIC算法获得的AoA(到达角)信息,获得准确的人体轨迹。在实验中,复杂平面几何特征分析算法在获取位移信息方面达到厘米级精度,而系统在模拟数据集上获取室内人体轨迹方面达到分米级精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of ICT Standardization
Journal of ICT Standardization Computer Science-Information Systems
CiteScore
2.20
自引率
0.00%
发文量
18
期刊最新文献
Application of Lenstra-Lenstra-Lovasz on Elliptic Curve Cryptosystem Using IOT Sensor Nodes A Study on the Translation of Spoken English from Speech to Text Security Monitoring and Early Warning of Negative Public Opinion on Social Networks Under Deep Learning A Meta-Learning Approach for Few-Shot Network Intrusion Detection Using Depthwise Separable Convolution Comparison of Different Machine Learning Algorithms in the Mental Health Assessment of College Students
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1