{"title":"Applying the Soil Water Assessment Tool to 5th Canadian Division Support Base Gagetown","authors":"S. Burdett, M. Hulley, Andy Smith","doi":"10.2166/WQRJC.2014.012","DOIUrl":null,"url":null,"abstract":"A hydrologic and water quality model is sought to establish an approach to land management decisions for a Canadian Army training base. Training areas are subjected to high levels of persistent activity creating unique land cover and land-use disturbances. Deforestation, complex road networks, off-road manoeuvres, and vehicle stream crossings are among major anthropogenic activities observed to affect these landscapes. Expanding, preserving and improving the quality of these areas to host training activities for future generations is critical to maintain operational effectiveness. Inclusive to this objective is minimizing resultant environmental degradation, principally in the form of hydrologic fluctuations, excess erosion, and sedimentation of aquatic environments. Application of the Soil Water Assessment Tool (SWAT) was assessed for its ability to simulate hydrologic and water quality conditions observed in military landscapes at 5th Canadian Division Support Base (5 CDSB) Gagetown, New Brunswick. Despite some limitations, this model adequately simulated three partial years of daily watershed outflow ( NSE = 0.47–0.79, R 2 = 0.50–0.88) and adequately predicted suspended sediment yields during the observation periods (% d = 6–47%) for one highly disturbed sub-watershed in Gagetown. Further development of this model may help guide decisions to develop or decommission training areas, guide land management practices and prioritize select landscape mitigation efforts.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2014.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
A hydrologic and water quality model is sought to establish an approach to land management decisions for a Canadian Army training base. Training areas are subjected to high levels of persistent activity creating unique land cover and land-use disturbances. Deforestation, complex road networks, off-road manoeuvres, and vehicle stream crossings are among major anthropogenic activities observed to affect these landscapes. Expanding, preserving and improving the quality of these areas to host training activities for future generations is critical to maintain operational effectiveness. Inclusive to this objective is minimizing resultant environmental degradation, principally in the form of hydrologic fluctuations, excess erosion, and sedimentation of aquatic environments. Application of the Soil Water Assessment Tool (SWAT) was assessed for its ability to simulate hydrologic and water quality conditions observed in military landscapes at 5th Canadian Division Support Base (5 CDSB) Gagetown, New Brunswick. Despite some limitations, this model adequately simulated three partial years of daily watershed outflow ( NSE = 0.47–0.79, R 2 = 0.50–0.88) and adequately predicted suspended sediment yields during the observation periods (% d = 6–47%) for one highly disturbed sub-watershed in Gagetown. Further development of this model may help guide decisions to develop or decommission training areas, guide land management practices and prioritize select landscape mitigation efforts.
期刊介绍:
The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas:
Impact of current and emerging contaminants on aquatic ecosystems
Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk)
Conservation and protection of aquatic environments
Responsible resource development and water quality (mining, forestry, hydropower, oil and gas)
Drinking water, wastewater and stormwater treatment technologies and strategies
Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality
Industrial water quality
Used water: Reuse and resource recovery
Groundwater quality (management, remediation, fracking, legacy contaminants)
Assessment of surface and subsurface water quality
Regulations, economics, strategies and policies related to water quality
Social science issues in relation to water quality
Water quality in remote areas
Water quality in cold climates
The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.