{"title":"Kinetic studies of phosphate adsorption onto construction solid waste (CSW)","authors":"C. Liu, Y. Yang, N. Wan","doi":"10.2166/WQRJC.2014.013","DOIUrl":null,"url":null,"abstract":"Adsorption of phosphate onto construction solid waste (CSW) was investigated in a batch system. CSW as an inescapable by-product of the construction and demolition process, was used as a composite adsorbent for the removal of phosphate in this study. The adsorption kinetics was investigated under various parameters such as contact time, pH, CSW dosage, initial phosphate concentration and particle size. Greater percentage of phosphate was removed with decrease in the initial concentration and increase in the amount of CSW used. Adsorption of phosphate was pH dependent, and maximum phosphate immobilisation capacity was obtained in alkaline condition. Lagergren first-order, second-order, intra-particle diffusion and external diffusion model were used to test the experimental data. Kinetic analysis showed that the adsorption was best fitted with the pseudo-second-order kinetic model. Adsorption mechanism studies revealed that both external mass transfer and intra-particle diffusion had rate limiting effects on the removal process. These results demonstrated that the CSW could be used as a low-cost adsorbent media for phosphate removal, and the data were relevant for optimal design of wastewater treatment plants.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2014.013","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2014.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 7
Abstract
Adsorption of phosphate onto construction solid waste (CSW) was investigated in a batch system. CSW as an inescapable by-product of the construction and demolition process, was used as a composite adsorbent for the removal of phosphate in this study. The adsorption kinetics was investigated under various parameters such as contact time, pH, CSW dosage, initial phosphate concentration and particle size. Greater percentage of phosphate was removed with decrease in the initial concentration and increase in the amount of CSW used. Adsorption of phosphate was pH dependent, and maximum phosphate immobilisation capacity was obtained in alkaline condition. Lagergren first-order, second-order, intra-particle diffusion and external diffusion model were used to test the experimental data. Kinetic analysis showed that the adsorption was best fitted with the pseudo-second-order kinetic model. Adsorption mechanism studies revealed that both external mass transfer and intra-particle diffusion had rate limiting effects on the removal process. These results demonstrated that the CSW could be used as a low-cost adsorbent media for phosphate removal, and the data were relevant for optimal design of wastewater treatment plants.
期刊介绍:
The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas:
Impact of current and emerging contaminants on aquatic ecosystems
Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk)
Conservation and protection of aquatic environments
Responsible resource development and water quality (mining, forestry, hydropower, oil and gas)
Drinking water, wastewater and stormwater treatment technologies and strategies
Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality
Industrial water quality
Used water: Reuse and resource recovery
Groundwater quality (management, remediation, fracking, legacy contaminants)
Assessment of surface and subsurface water quality
Regulations, economics, strategies and policies related to water quality
Social science issues in relation to water quality
Water quality in remote areas
Water quality in cold climates
The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.