Fan Liu, Guanxing Huang, Jichao Sun, Ji-hong Jing, Ying Zhang
{"title":"Distribution of arsenic in shallow aquifers of Guangzhou region, China: natural and anthropogenic impacts","authors":"Fan Liu, Guanxing Huang, Jichao Sun, Ji-hong Jing, Ying Zhang","doi":"10.2166/WQRJC.2014.014","DOIUrl":null,"url":null,"abstract":"To elucidate the distribution of arsenic in shallow aquifers of the Guangzhou region (South China), 85 groundwater samples were collected and 18 chemical parameters of them were analyzed. The arsenic concentration of groundwater ranged from below detection limit to 0.13 mg/L. The results showed that those areas with high arsenic concentration were characterized by porous aquifers, low-lying, relief topography and close proximity to fault belt and rivers. The reductive dissolution of Fe (hydr)oxides is the main control mechanism for arsenic enrichment in the river delta region where groundwater is mainly characterized by a reducing environment. This mechanism was well embodied in the areas with these geological and geographical features. Agricultural fertilizer could produce high levels of nitrate in groundwater and the reduction of it could restrain the enrichment of arsenic. Industrial effluents, sewage irrigation and the probable leakage from sewers could promote the arsenic content in groundwater by lateral flow and infiltration. In addition, the effect of ion competition between phosphate and arsenic occurred in sewer leakage areas characterized by middle-high construction leading to the elevation of arsenic concentrations. The arsenic distribution in groundwater was caused by these natural and anthropogenic factors jointly.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2014.014","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2014.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 6
Abstract
To elucidate the distribution of arsenic in shallow aquifers of the Guangzhou region (South China), 85 groundwater samples were collected and 18 chemical parameters of them were analyzed. The arsenic concentration of groundwater ranged from below detection limit to 0.13 mg/L. The results showed that those areas with high arsenic concentration were characterized by porous aquifers, low-lying, relief topography and close proximity to fault belt and rivers. The reductive dissolution of Fe (hydr)oxides is the main control mechanism for arsenic enrichment in the river delta region where groundwater is mainly characterized by a reducing environment. This mechanism was well embodied in the areas with these geological and geographical features. Agricultural fertilizer could produce high levels of nitrate in groundwater and the reduction of it could restrain the enrichment of arsenic. Industrial effluents, sewage irrigation and the probable leakage from sewers could promote the arsenic content in groundwater by lateral flow and infiltration. In addition, the effect of ion competition between phosphate and arsenic occurred in sewer leakage areas characterized by middle-high construction leading to the elevation of arsenic concentrations. The arsenic distribution in groundwater was caused by these natural and anthropogenic factors jointly.
期刊介绍:
The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas:
Impact of current and emerging contaminants on aquatic ecosystems
Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk)
Conservation and protection of aquatic environments
Responsible resource development and water quality (mining, forestry, hydropower, oil and gas)
Drinking water, wastewater and stormwater treatment technologies and strategies
Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality
Industrial water quality
Used water: Reuse and resource recovery
Groundwater quality (management, remediation, fracking, legacy contaminants)
Assessment of surface and subsurface water quality
Regulations, economics, strategies and policies related to water quality
Social science issues in relation to water quality
Water quality in remote areas
Water quality in cold climates
The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.