Effect of ionic strength on the ion exchange equilibrium between AMX membrane and electrolyte solutions

IF 2 Q3 Environmental Science Water Quality Research Journal of Canada Pub Date : 2016-02-15 DOI:10.2166/WQRJC.2015.006
Islem Louati, F. Guesmi, A. Chaabouni, Chiraz Hannachi, B. Hamrouni
{"title":"Effect of ionic strength on the ion exchange equilibrium between AMX membrane and electrolyte solutions","authors":"Islem Louati, F. Guesmi, A. Chaabouni, Chiraz Hannachi, B. Hamrouni","doi":"10.2166/WQRJC.2015.006","DOIUrl":null,"url":null,"abstract":"The effect of ionic strength variation on the ion exchange equilibrium between AMX anion exchange membrane and electrolyte solutions containing the most dominant anions on natural waters (Cl−, NO3−, and SO42−) was studied. All experiments were carried out at a constant temperature of 25 °C. Ion exchange isotherms were established, at different ionic strengths from 0.1 to 0.5 M, for the systems (Cl−/NO3−), (Cl−/SO42−) and (NO3−/SO42−). Obtained results showed that for I = 0.1 M the affinity order is SO42 −>NO3−>Cl−. For I = 0.2 M this order is NO3−>SO42−>Cl−. For 0.3 and 0.5 M the AMX membrane becomes more selective for chloride than for nitrate or sulfate. Selectivity coefficients KNO3−Cl−, K2Cl−SO42− and K2NO3−SO42−, thermodynamic constants, and separation factors were calculated and decreased with the increase of ionic strength.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":"51 1","pages":"60-68"},"PeriodicalIF":2.0000,"publicationDate":"2016-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2015.006","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2015.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 4

Abstract

The effect of ionic strength variation on the ion exchange equilibrium between AMX anion exchange membrane and electrolyte solutions containing the most dominant anions on natural waters (Cl−, NO3−, and SO42−) was studied. All experiments were carried out at a constant temperature of 25 °C. Ion exchange isotherms were established, at different ionic strengths from 0.1 to 0.5 M, for the systems (Cl−/NO3−), (Cl−/SO42−) and (NO3−/SO42−). Obtained results showed that for I = 0.1 M the affinity order is SO42 −>NO3−>Cl−. For I = 0.2 M this order is NO3−>SO42−>Cl−. For 0.3 and 0.5 M the AMX membrane becomes more selective for chloride than for nitrate or sulfate. Selectivity coefficients KNO3−Cl−, K2Cl−SO42− and K2NO3−SO42−, thermodynamic constants, and separation factors were calculated and decreased with the increase of ionic strength.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子强度对AMX膜与电解质溶液间离子交换平衡的影响
研究了离子强度变化对天然水体(Cl−、NO3−和SO42−)中AMX阴离子交换膜与含优势阴离子电解质溶液之间离子交换平衡的影响。所有实验均在25℃恒温下进行。建立了离子强度为0.1 ~ 0.5 M时(Cl−/NO3−)、(Cl−/SO42−)和(NO3−/SO42−)体系的离子交换等温线。结果表明,当I = 0.1 M时,亲和顺序为SO42−>NO3−>Cl−。当I = 0.2 M时,其顺序为NO3−>SO42−>Cl−。在0.3和0.5 M时,AMX膜对氯化物的选择性比对硝酸盐或硫酸盐的选择性更强。计算了选择性系数KNO3−Cl−、K2Cl−SO42−和K2NO3−SO42−、热力学常数和分离因子,它们随着离子强度的增加而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas: Impact of current and emerging contaminants on aquatic ecosystems Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk) Conservation and protection of aquatic environments Responsible resource development and water quality (mining, forestry, hydropower, oil and gas) Drinking water, wastewater and stormwater treatment technologies and strategies Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality Industrial water quality Used water: Reuse and resource recovery Groundwater quality (management, remediation, fracking, legacy contaminants) Assessment of surface and subsurface water quality Regulations, economics, strategies and policies related to water quality Social science issues in relation to water quality Water quality in remote areas Water quality in cold climates The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.
期刊最新文献
Carbon filtration: harnessing cotton's power to purify drinking water Development of an online analyser to meet challenging new discharge limits for mercury in flue gas desulphurisation wastewater Single-wavelength colorimetric tests for low-cost estimation of bacterial activity, chemical oxygen demand, and turbidity in domestic wastewater Evapotranspiration and crop coefficient for Typha latifolia in constructed wetlands Editorial: New Energy for Water Quality Research!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1