{"title":"Effect of soil texture on water infiltration in semiarid reclaimed land","authors":"Wenmei Ma, Xingchang Zhang, Qing Zhen, Yanjiang Zhang","doi":"10.2166/WQRJC.2015.025","DOIUrl":null,"url":null,"abstract":"The infiltration of water and its influencing factors in disturbed or reclaimed land are not well understood. A better understanding would provide essential information for assessing the hydrological processes in disturbed ecosystems. We measured the infiltration of water in soils from loamy and sandy reclaimed land. The relationships between infiltration and soil properties were analyzed based on three models: the Kostiakov, Philip, and Green–Ampt equations. Our objectives were to understand water infiltration in reclaimed land with a variety of soil textures and to establish the dependence of water infiltration on soil properties. Both the rate of infiltration and the cumulative infiltration were higher in sandy than in loamy soils. The rate of infiltration and the cumulative infiltration decreased with soil depth in undisturbed land. The sorptivity rate ( S ) from the Philip equation, empirical coefficient ( K ) from the Kostiakov equation, and the satiated hydraulic conductivity ( Ksl ) from the Green–Ampt equation were 22%, 16%, and 7.1% higher, respectively, in sandy than in loamy soils. The Ksl increased significantly with Ks (saturated hydraulic conductivity) in both sandy and loamy soils. These indicated that the Green–Ampt equation can be used to describe Ks and the characteristics of infiltration for soils on disturbed land.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2016-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2015.025","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2015.025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 22
Abstract
The infiltration of water and its influencing factors in disturbed or reclaimed land are not well understood. A better understanding would provide essential information for assessing the hydrological processes in disturbed ecosystems. We measured the infiltration of water in soils from loamy and sandy reclaimed land. The relationships between infiltration and soil properties were analyzed based on three models: the Kostiakov, Philip, and Green–Ampt equations. Our objectives were to understand water infiltration in reclaimed land with a variety of soil textures and to establish the dependence of water infiltration on soil properties. Both the rate of infiltration and the cumulative infiltration were higher in sandy than in loamy soils. The rate of infiltration and the cumulative infiltration decreased with soil depth in undisturbed land. The sorptivity rate ( S ) from the Philip equation, empirical coefficient ( K ) from the Kostiakov equation, and the satiated hydraulic conductivity ( Ksl ) from the Green–Ampt equation were 22%, 16%, and 7.1% higher, respectively, in sandy than in loamy soils. The Ksl increased significantly with Ks (saturated hydraulic conductivity) in both sandy and loamy soils. These indicated that the Green–Ampt equation can be used to describe Ks and the characteristics of infiltration for soils on disturbed land.
期刊介绍:
The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas:
Impact of current and emerging contaminants on aquatic ecosystems
Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk)
Conservation and protection of aquatic environments
Responsible resource development and water quality (mining, forestry, hydropower, oil and gas)
Drinking water, wastewater and stormwater treatment technologies and strategies
Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality
Industrial water quality
Used water: Reuse and resource recovery
Groundwater quality (management, remediation, fracking, legacy contaminants)
Assessment of surface and subsurface water quality
Regulations, economics, strategies and policies related to water quality
Social science issues in relation to water quality
Water quality in remote areas
Water quality in cold climates
The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.