{"title":"Electrochemical oxidation of m-cresol purple dye in aqueous media","authors":"S. Khezrianjoo, H. D. Revanasiddappa","doi":"10.2166/WQRJC.2015.036","DOIUrl":null,"url":null,"abstract":"The present investigation showed that the indicator dye m -cresol purple ( m CP) was degraded in a laboratory scale, undivided electrolysis cell system. A platinum anode was used for generation of chlorine in the dye solution. The influence of supporting electrolyte, applied voltage, pH, initial dye concentration and temperature were studied. The ultraviolet-visible spectra of samples during the electrochemical oxidation showed rapid decolorization of the dye solution. During the electrochemical degradation process, dye concentration and current were measured to evaluate the energy consumption and current efficiency. After 10 minutes of electrolysis, a solution containing 20 mg/L m CP showed complete color removal at a supporting electrolyte concentration of 1 g/L NaCl, initial pH 6.7, temperature 25 °C and applied voltage 5 V; however, when pH was kept at 6.7, a higher rate constant was observed. There was good fit of the data to pseudo-first-order kinetics for dye removal in all experiments. Dependence of the decolorization rate on the initial m CP concentration can be described as r o α[ mCP ]o−0.98. The apparent activation energy for the electrochemical decolorization of m CP was determined to be −6.29 kJ/mol.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2015-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2015.036","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2015.036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 3
Abstract
The present investigation showed that the indicator dye m -cresol purple ( m CP) was degraded in a laboratory scale, undivided electrolysis cell system. A platinum anode was used for generation of chlorine in the dye solution. The influence of supporting electrolyte, applied voltage, pH, initial dye concentration and temperature were studied. The ultraviolet-visible spectra of samples during the electrochemical oxidation showed rapid decolorization of the dye solution. During the electrochemical degradation process, dye concentration and current were measured to evaluate the energy consumption and current efficiency. After 10 minutes of electrolysis, a solution containing 20 mg/L m CP showed complete color removal at a supporting electrolyte concentration of 1 g/L NaCl, initial pH 6.7, temperature 25 °C and applied voltage 5 V; however, when pH was kept at 6.7, a higher rate constant was observed. There was good fit of the data to pseudo-first-order kinetics for dye removal in all experiments. Dependence of the decolorization rate on the initial m CP concentration can be described as r o α[ mCP ]o−0.98. The apparent activation energy for the electrochemical decolorization of m CP was determined to be −6.29 kJ/mol.
期刊介绍:
The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas:
Impact of current and emerging contaminants on aquatic ecosystems
Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk)
Conservation and protection of aquatic environments
Responsible resource development and water quality (mining, forestry, hydropower, oil and gas)
Drinking water, wastewater and stormwater treatment technologies and strategies
Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality
Industrial water quality
Used water: Reuse and resource recovery
Groundwater quality (management, remediation, fracking, legacy contaminants)
Assessment of surface and subsurface water quality
Regulations, economics, strategies and policies related to water quality
Social science issues in relation to water quality
Water quality in remote areas
Water quality in cold climates
The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.