{"title":"Investigation of full-scale step-fed SBR under low dissolved oxygen: performance and microbial community response","authors":"Heloísa Fernandes, R. Antônio, R. Costa","doi":"10.2166/WQRJC.2016.042","DOIUrl":null,"url":null,"abstract":"A decentralized full-scale sequencing batch reactor (SBR) system for treating wastewater was operated to assess their feasibility and the response of bacterial population dynamic and nutrient removal performance. The reactor was operated under low dissolved oxygen (DO) concentration (0.3–0.7 mgL−1) and an average applied organic load of 0.5 g COD L−1 d−1 (COD: chemical oxygen demand). Removal efficiencies were higher than 70% for both soluble chemical oxygen demand and ammonium, with average effluent concentration of 51 ± 15 mg COD L−1 and 16.0 mg NH4+ L−1. The mixed liquor volatile suspended solids/total suspended solids ratio was 0.9, and the average food/microorganism ratio was 0.3 g COD g VSS−1 d−1 (VSS: volatile suspended solids). The active biomass was composed of 94.9% heterotrophic and 5.1% autotrophic organisms. The most frequently identified were chemoorganoheterotrophic organisms affiliated with Bacteroidetes and Firmicutes, some of them with the capacity to denitrify and grow under low DO concentration. Temperature and sludge withdrawal were important factors in determining nitrification and phosphorus removal rates. The SBR was viable for domestic wastewater treatment and showed that the microbial community greatly influenced its performance. This work can also provide valuable insights into further applications in systems operated under low DO condition.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2016-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2016.042","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2016.042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1
Abstract
A decentralized full-scale sequencing batch reactor (SBR) system for treating wastewater was operated to assess their feasibility and the response of bacterial population dynamic and nutrient removal performance. The reactor was operated under low dissolved oxygen (DO) concentration (0.3–0.7 mgL−1) and an average applied organic load of 0.5 g COD L−1 d−1 (COD: chemical oxygen demand). Removal efficiencies were higher than 70% for both soluble chemical oxygen demand and ammonium, with average effluent concentration of 51 ± 15 mg COD L−1 and 16.0 mg NH4+ L−1. The mixed liquor volatile suspended solids/total suspended solids ratio was 0.9, and the average food/microorganism ratio was 0.3 g COD g VSS−1 d−1 (VSS: volatile suspended solids). The active biomass was composed of 94.9% heterotrophic and 5.1% autotrophic organisms. The most frequently identified were chemoorganoheterotrophic organisms affiliated with Bacteroidetes and Firmicutes, some of them with the capacity to denitrify and grow under low DO concentration. Temperature and sludge withdrawal were important factors in determining nitrification and phosphorus removal rates. The SBR was viable for domestic wastewater treatment and showed that the microbial community greatly influenced its performance. This work can also provide valuable insights into further applications in systems operated under low DO condition.
期刊介绍:
The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas:
Impact of current and emerging contaminants on aquatic ecosystems
Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk)
Conservation and protection of aquatic environments
Responsible resource development and water quality (mining, forestry, hydropower, oil and gas)
Drinking water, wastewater and stormwater treatment technologies and strategies
Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality
Industrial water quality
Used water: Reuse and resource recovery
Groundwater quality (management, remediation, fracking, legacy contaminants)
Assessment of surface and subsurface water quality
Regulations, economics, strategies and policies related to water quality
Social science issues in relation to water quality
Water quality in remote areas
Water quality in cold climates
The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.