Kun Dong, Wubin Wang, Min Li, Xinyu Zhou, Yutong Huang, Guozhi Zhou, Yufeng Xu, Dunqiu Wang, Hai-xiang Li
{"title":"Degradation of sulfonamide antibiotics in the rhizosphere of two dominant plants in Huixian karst wetland, Guangxi, China","authors":"Kun Dong, Wubin Wang, Min Li, Xinyu Zhou, Yutong Huang, Guozhi Zhou, Yufeng Xu, Dunqiu Wang, Hai-xiang Li","doi":"10.2166/wrd.2023.062","DOIUrl":null,"url":null,"abstract":"\n In this work, Phragmites australis and Vallisneria natans were selected as the research objects and were cultured for 10 d under 0.10 μg L−1 sulfadiazine (SD) stress in a simulated surface flow wetland reactor. SD degradation was conducted at pH = 7 and 25 °C for 96 h. Each plant group conformed to the first-order kinetic model of degradation, and the degradation rate increased with time, reaching the maximum at 96 h. At 96 h, the degradation rate of P. australis communities was higher than that of V. natans. SD metabolites showed that the degradation pathways in the plant rhizosphere were mainly hydroxylation, aminolation, and S–N bond cleavage. In the analysis of rhizosphere bacterial community structure, the bacterial phyla that could degrade antibiotics accounted for a large proportion. Compared with before degradation, the dominant phylum and genus did not change after degradation (96 h), but their abundance changed to varying degrees, and new genera appeared in the P. australis group. This research provides a reference for the degradation of antibiotics in karst areas and new information on the mechanism of SA degradation in the plant rhizosphere.","PeriodicalId":17556,"journal":{"name":"Journal of Water Reuse and Desalination","volume":"1 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Reuse and Desalination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wrd.2023.062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1
Abstract
In this work, Phragmites australis and Vallisneria natans were selected as the research objects and were cultured for 10 d under 0.10 μg L−1 sulfadiazine (SD) stress in a simulated surface flow wetland reactor. SD degradation was conducted at pH = 7 and 25 °C for 96 h. Each plant group conformed to the first-order kinetic model of degradation, and the degradation rate increased with time, reaching the maximum at 96 h. At 96 h, the degradation rate of P. australis communities was higher than that of V. natans. SD metabolites showed that the degradation pathways in the plant rhizosphere were mainly hydroxylation, aminolation, and S–N bond cleavage. In the analysis of rhizosphere bacterial community structure, the bacterial phyla that could degrade antibiotics accounted for a large proportion. Compared with before degradation, the dominant phylum and genus did not change after degradation (96 h), but their abundance changed to varying degrees, and new genera appeared in the P. australis group. This research provides a reference for the degradation of antibiotics in karst areas and new information on the mechanism of SA degradation in the plant rhizosphere.
期刊介绍:
Journal of Water Reuse and Desalination publishes refereed review articles, theoretical and experimental research papers, new findings and issues of unplanned and planned reuse. The journal welcomes contributions from developing and developed countries.