Cloud-Based Intrusion Detection Approach Using Machine Learning Techniques

IF 7.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Big Data Mining and Analytics Pub Date : 2023-04-07 DOI:10.26599/BDMA.2022.9020038
Hanaa Attou;Azidine Guezzaz;Said Benkirane;Mourade Azrour;Yousef Farhaoui
{"title":"Cloud-Based Intrusion Detection Approach Using Machine Learning Techniques","authors":"Hanaa Attou;Azidine Guezzaz;Said Benkirane;Mourade Azrour;Yousef Farhaoui","doi":"10.26599/BDMA.2022.9020038","DOIUrl":null,"url":null,"abstract":"Cloud computing (CC) is a novel technology that has made it easier to access network and computer resources on demand such as storage and data management services. In addition, it aims to strengthen systems and make them useful. Regardless of these advantages, cloud providers suffer from many security limits. Particularly, the security of resources and services represents a real challenge for cloud technologies. For this reason, a set of solutions have been implemented to improve cloud security by monitoring resources, services, and networks, then detect attacks. Actually, intrusion detection system (IDS) is an enhanced mechanism used to control traffic within networks and detect abnormal activities. This paper presents a cloud-based intrusion detection model based on random forest (RF) and feature engineering. Specifically, the RF classifier is obtained and integrated to enhance accuracy (ACC) of the proposed detection model. The proposed model approach has been evaluated and validated on two datasets and gives 98.3% ACC and 99.99% ACC using Bot-IoT and NSL-KDD datasets, respectively. Consequently, the obtained results present good performances in terms of ACC, precision, and recall when compared to the recent related works.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"6 3","pages":"311-320"},"PeriodicalIF":7.7000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/10097649/10097662.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/10097662/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

Abstract

Cloud computing (CC) is a novel technology that has made it easier to access network and computer resources on demand such as storage and data management services. In addition, it aims to strengthen systems and make them useful. Regardless of these advantages, cloud providers suffer from many security limits. Particularly, the security of resources and services represents a real challenge for cloud technologies. For this reason, a set of solutions have been implemented to improve cloud security by monitoring resources, services, and networks, then detect attacks. Actually, intrusion detection system (IDS) is an enhanced mechanism used to control traffic within networks and detect abnormal activities. This paper presents a cloud-based intrusion detection model based on random forest (RF) and feature engineering. Specifically, the RF classifier is obtained and integrated to enhance accuracy (ACC) of the proposed detection model. The proposed model approach has been evaluated and validated on two datasets and gives 98.3% ACC and 99.99% ACC using Bot-IoT and NSL-KDD datasets, respectively. Consequently, the obtained results present good performances in terms of ACC, precision, and recall when compared to the recent related works.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习技术的云入侵检测方法
云计算(CC)是一种新技术,它使访问网络和计算机资源(如存储和数据管理服务)变得更容易。此外,它旨在加强系统并使其发挥作用。不管这些优势如何,云提供商都受到许多安全限制。特别是,资源和服务的安全性对云技术来说是一个真正的挑战。出于这个原因,已经实施了一套解决方案,通过监控资源、服务和网络,然后检测攻击,来提高云安全性。实际上,入侵检测系统(IDS)是一种用于控制网络内流量和检测异常活动的增强机制。本文提出了一种基于随机森林和特征工程的基于云的入侵检测模型。具体地,获得并集成RF分类器以提高所提出的检测模型的准确性(ACC)。所提出的模型方法已经在两个数据集上进行了评估和验证,使用Bot-IoT和NSL-KDD数据集分别给出了98.3%和99.99%的ACC。因此,与最近的相关工作相比,所获得的结果在ACC、精度和回忆方面表现出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Data Mining and Analytics
Big Data Mining and Analytics Computer Science-Computer Science Applications
CiteScore
20.90
自引率
2.20%
发文量
84
期刊介绍: Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge. Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications. Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more. With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.
期刊最新文献
Contents Front Cover Incremental Data Stream Classification with Adaptive Multi-Task Multi-View Learning Attention-Based CNN Fusion Model for Emotion Recognition During Walking Using Discrete Wavelet Transform on EEG and Inertial Signals Gender-Based Analysis of User Reactions to Facebook Posts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1