{"title":"Ultra-Short Wave Communication Squelch Algorithm Based on Deep Neural Network","authors":"Yuanxin Xiang;Yi Lv;Wenqiang Lei;Jiancheng Lv","doi":"10.26599/BDMA.2022.9020025","DOIUrl":null,"url":null,"abstract":"The squelch problem of ultra-short wave communication under non-stationary noise and low Signal-to-Noise Ratio (SNR) in a complex electromagnetic environment is still challenging. To alleviate the problem, we proposed a squelch algorithm for ultra-short wave communication based on a deep neural network and the traditional energy decision method. The proposed algorithm first predicts the speech existence probability using a three-layer Gated Recurrent Unit (GRU) with the speech banding spectrum as the feature. Then it gets the final squelch result by combining the strength of the signal energy and the speech existence probability. Multiple simulations and experiments are done to verify the robustness and effectiveness of the proposed algorithm. We simulate the algorithm in three situations: the typical Amplitude Modulation (AM) and Frequency Modulation (FM) in the ultra-short wave communication under different SNR environments, the non-stationary burst-like noise environments, and the real received signal of the ultra-short wave radio. The experimental results show that the proposed algorithm performs better than the traditional squelch methods in all the simulations and experiments. In particular, the false alarm rate of the proposed squelch algorithm for non-stationary burst-like noise is significantly lower than that of traditional squelch methods.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"6 1","pages":"106-114"},"PeriodicalIF":7.7000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9962810/09962958.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9962958/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
The squelch problem of ultra-short wave communication under non-stationary noise and low Signal-to-Noise Ratio (SNR) in a complex electromagnetic environment is still challenging. To alleviate the problem, we proposed a squelch algorithm for ultra-short wave communication based on a deep neural network and the traditional energy decision method. The proposed algorithm first predicts the speech existence probability using a three-layer Gated Recurrent Unit (GRU) with the speech banding spectrum as the feature. Then it gets the final squelch result by combining the strength of the signal energy and the speech existence probability. Multiple simulations and experiments are done to verify the robustness and effectiveness of the proposed algorithm. We simulate the algorithm in three situations: the typical Amplitude Modulation (AM) and Frequency Modulation (FM) in the ultra-short wave communication under different SNR environments, the non-stationary burst-like noise environments, and the real received signal of the ultra-short wave radio. The experimental results show that the proposed algorithm performs better than the traditional squelch methods in all the simulations and experiments. In particular, the false alarm rate of the proposed squelch algorithm for non-stationary burst-like noise is significantly lower than that of traditional squelch methods.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.