{"title":"An Optimized Sanitization Approach for Minable Data Publication","authors":"Fan Yang;Xiaofeng Liao","doi":"10.26599/BDMA.2022.9020007","DOIUrl":null,"url":null,"abstract":"Minable data publication is ubiquitous since it is beneficial to sharing/trading data among commercial companies and further facilitates the development of data-driven tasks. Unfortunately, the minable data publication is often implemented by publishers with limited privacy concerns such that the published dataset is minable by malicious entities. It prohibits minable data publication since the published data may contain sensitive information. Thus, it is urgently demanded to present some approaches and technologies for reducing the privacy leakage risks. To this end, in this paper, we propose an optimized sanitization approach for minable data publication (named as SA-MDP). SA-MDP supports association rules mining function while providing privacy protection for specific rules. In SA-MDP, we consider the trade-off between the data utility and the data privacy in the minable data publication problem. To address this problem, SA-MDP designs a customized particle swarm optimization (PSO) algorithm, where the optimization objective is determined by both the data utility and the data privacy. Specifically, we take advantage of PSO to produce new particles, which is achieved by random mutation or learning from the best particle. Hence, SA-MDP can avoid the solutions being trapped into local optima. Besides, we design a proper fitness function to guide the particles to run towards the optimal solution. Additionally, we present a preprocessing method before the evolution process of the customized PSO algorithm to improve the convergence rate. Finally, the proposed SA-MDP approach is performed and verified over several datasets. The experimental results have demonstrated the effectiveness and efficiency of SA-MDP.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"5 3","pages":"257-269"},"PeriodicalIF":7.7000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9793354/09793357.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9793357/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Minable data publication is ubiquitous since it is beneficial to sharing/trading data among commercial companies and further facilitates the development of data-driven tasks. Unfortunately, the minable data publication is often implemented by publishers with limited privacy concerns such that the published dataset is minable by malicious entities. It prohibits minable data publication since the published data may contain sensitive information. Thus, it is urgently demanded to present some approaches and technologies for reducing the privacy leakage risks. To this end, in this paper, we propose an optimized sanitization approach for minable data publication (named as SA-MDP). SA-MDP supports association rules mining function while providing privacy protection for specific rules. In SA-MDP, we consider the trade-off between the data utility and the data privacy in the minable data publication problem. To address this problem, SA-MDP designs a customized particle swarm optimization (PSO) algorithm, where the optimization objective is determined by both the data utility and the data privacy. Specifically, we take advantage of PSO to produce new particles, which is achieved by random mutation or learning from the best particle. Hence, SA-MDP can avoid the solutions being trapped into local optima. Besides, we design a proper fitness function to guide the particles to run towards the optimal solution. Additionally, we present a preprocessing method before the evolution process of the customized PSO algorithm to improve the convergence rate. Finally, the proposed SA-MDP approach is performed and verified over several datasets. The experimental results have demonstrated the effectiveness and efficiency of SA-MDP.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.