{"title":"A Systematic Review Towards Big Data Analytics in Social Media","authors":"Md. Saifur Rahman;Hassan Reza","doi":"10.26599/BDMA.2022.9020009","DOIUrl":null,"url":null,"abstract":"The recent advancement in internet 2.0 creates a scope to connect people worldwide using society 2.0 and web 2.0 technologies. This new era allows the consumer to directly connect with other individuals, business corporations, and the government. People are open to sharing opinions, views, and ideas on any topic in different formats out loud. This creates the opportunity to make the “Big Social Data” handy by implementing machine learning approaches and social data analytics. This study offers an overview of recent works in social media, data science, and machine learning to gain a wide perspective on social media big data analytics. We explain why social media data are significant elements of the improved data-driven decision-making process. We propose and build the “Sunflower Model of Big Data” to define big data and bring it up to date with technology by combining 5 V's and 10 Bigs. We discover the top ten social data analytics to work in the domain of social media platforms. A comprehensive list of relevant statistical/machine learning methods to implement each of these big data analytics is discussed in this work. “Text Analytics” is the most used analytics in social data analysis to date. We create a taxonomy on social media analytics to meet the need and provide a clear understanding. Tools, techniques, and supporting data type are also discussed in this research work. As a result, researchers will have an easier time deciding which social data analytics would best suit their needs.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"5 3","pages":"228-244"},"PeriodicalIF":7.7000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9793354/09793356.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9793356/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6
Abstract
The recent advancement in internet 2.0 creates a scope to connect people worldwide using society 2.0 and web 2.0 technologies. This new era allows the consumer to directly connect with other individuals, business corporations, and the government. People are open to sharing opinions, views, and ideas on any topic in different formats out loud. This creates the opportunity to make the “Big Social Data” handy by implementing machine learning approaches and social data analytics. This study offers an overview of recent works in social media, data science, and machine learning to gain a wide perspective on social media big data analytics. We explain why social media data are significant elements of the improved data-driven decision-making process. We propose and build the “Sunflower Model of Big Data” to define big data and bring it up to date with technology by combining 5 V's and 10 Bigs. We discover the top ten social data analytics to work in the domain of social media platforms. A comprehensive list of relevant statistical/machine learning methods to implement each of these big data analytics is discussed in this work. “Text Analytics” is the most used analytics in social data analysis to date. We create a taxonomy on social media analytics to meet the need and provide a clear understanding. Tools, techniques, and supporting data type are also discussed in this research work. As a result, researchers will have an easier time deciding which social data analytics would best suit their needs.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.