Reconstruction, Topological and Gene Ontology Enrichment Analysis of Cancerous Gene Regulatory Network Modules

IF 2.9 3区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Current Bioinformatics Pub Date : 2016-03-31 DOI:10.2174/1574893611666160115212806
Khalid Raza
{"title":"Reconstruction, Topological and Gene Ontology Enrichment Analysis of Cancerous Gene Regulatory Network Modules","authors":"Khalid Raza","doi":"10.2174/1574893611666160115212806","DOIUrl":null,"url":null,"abstract":"The availability of large set of high throughput biological data needs algorithm that automatically reconstructs gene regulatory networks from these datasets. Cancerous regulatory network modules when analyzed critically may reveal the underlying mechanism of cancer, which may help in better diagnosis. Identification of cancerous genes and their regulation is an important research area in cancer systems biology. In this paper, we introduced an algorithm to infer cancerous gene regulatory network modules from gene expression profiles. The proposed algorithm has been applied to gene expression dataset of colon cancer patients and several network modules have been identified. We performed topological analysis of inferred network modules in terms of network density, degree distribution, clustering coefficient, average path length, network heterogeneity, and centrality measures. Further, GO-based enrichment analysis of the inferred network has been performed. To validate the proposed algorithm, it has been tested on benchmark dataset taken from DREAM3 challenge project.","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":"11 1","pages":"243-258"},"PeriodicalIF":2.9000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1574893611666160115212806","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 21

Abstract

The availability of large set of high throughput biological data needs algorithm that automatically reconstructs gene regulatory networks from these datasets. Cancerous regulatory network modules when analyzed critically may reveal the underlying mechanism of cancer, which may help in better diagnosis. Identification of cancerous genes and their regulation is an important research area in cancer systems biology. In this paper, we introduced an algorithm to infer cancerous gene regulatory network modules from gene expression profiles. The proposed algorithm has been applied to gene expression dataset of colon cancer patients and several network modules have been identified. We performed topological analysis of inferred network modules in terms of network density, degree distribution, clustering coefficient, average path length, network heterogeneity, and centrality measures. Further, GO-based enrichment analysis of the inferred network has been performed. To validate the proposed algorithm, it has been tested on benchmark dataset taken from DREAM3 challenge project.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
癌基因调控网络模块的重构、拓扑和基因本体富集分析
大量高通量的生物数据的可用性需要从这些数据集自动重建基因调控网络的算法。对癌症调控网络模块进行批判性分析可以揭示癌症的潜在机制,从而有助于更好地诊断癌症。肿瘤基因的鉴定及其调控是肿瘤系统生物学的一个重要研究领域。本文介绍了一种从基因表达谱中推断癌基因调控网络模块的算法。该算法已应用于结肠癌患者基因表达数据集,并确定了多个网络模块。我们从网络密度、度分布、聚类系数、平均路径长度、网络异质性和中心性等方面对推断的网络模块进行了拓扑分析。此外,对推断网络进行了基于go的富集分析。为了验证所提出的算法,在DREAM3挑战项目的基准数据集上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Bioinformatics
Current Bioinformatics 生物-生化研究方法
CiteScore
6.60
自引率
2.50%
发文量
77
审稿时长
>12 weeks
期刊介绍: Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science. The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.
期刊最新文献
Mining Transcriptional Data for Precision Medicine: Bioinformatics Insights into Inflammatory Bowel Disease Prediction of miRNA-disease Associations by Deep Matrix Decomposition Method based on Fused Similarity Information TCM@MPXV: A Resource for Treating Monkeypox Patients in Traditional Chinese Medicine Identifying Key Clinical Indicators Associated with the Risk of Death in Hospitalized COVID-19 Patients A Parallel Implementation for Large-Scale TSR-based 3D Structural Comparisons of Protein and Amino Acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1