Testing exogeneity in nonparametric instrumental variables identified by conditional quantile restrictions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2015-10-21 DOI:10.1920/WP.CEM.2015.6815
J. Fu, J. Horowitz, M. Parey
{"title":"Testing exogeneity in nonparametric instrumental variables identified by conditional quantile restrictions","authors":"J. Fu, J. Horowitz, M. Parey","doi":"10.1920/WP.CEM.2015.6815","DOIUrl":null,"url":null,"abstract":"This paper presents a test for exogeneity of explanatory variables in a nonparametric instrumental variables (IV) model whose structural function is identified through a conditional quantile restriction. Quantile regression models are increasingly important in applied econometrics. As with mean-regression models, an erroneous assumption that the explanatory variables in a quantile regression model are exogenous can lead to highly misleading results. In addition, a test of exogeneity based on an incorrectly specified parametric model can produce misleading results. This paper presents a test of exogeneity that does not assume the structural function belongs to a known finite-dimensional parametric family and does not require nonparametric estimation of this function. The latter property is important because, owing to the ill-posed inverse problem, a test based on a nonparametric estimator of the structural function has low power. The test presented here is consistent whenever the structural function differs from the conditional quantile function on a set of non-zero probability. The test has non-trivial power uniformly over a large class of structural functions that differ from the conditional quantile function by O(n-1/2) . The results of Monte Carlo experiments illustrate the usefulness of the test.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2015-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1920/WP.CEM.2015.6815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a test for exogeneity of explanatory variables in a nonparametric instrumental variables (IV) model whose structural function is identified through a conditional quantile restriction. Quantile regression models are increasingly important in applied econometrics. As with mean-regression models, an erroneous assumption that the explanatory variables in a quantile regression model are exogenous can lead to highly misleading results. In addition, a test of exogeneity based on an incorrectly specified parametric model can produce misleading results. This paper presents a test of exogeneity that does not assume the structural function belongs to a known finite-dimensional parametric family and does not require nonparametric estimation of this function. The latter property is important because, owing to the ill-posed inverse problem, a test based on a nonparametric estimator of the structural function has low power. The test presented here is consistent whenever the structural function differs from the conditional quantile function on a set of non-zero probability. The test has non-trivial power uniformly over a large class of structural functions that differ from the conditional quantile function by O(n-1/2) . The results of Monte Carlo experiments illustrate the usefulness of the test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检验由条件分位数限制确定的非参数工具变量的外生性
本文提出了一个非参数工具变量(IV)模型中解释变量的外生性检验,该模型的结构函数是通过条件分位数限制来识别的。分位数回归模型在计量经济学应用中越来越重要。与均值回归模型一样,分位数回归模型中的解释变量是外生的错误假设可能导致高度误导性的结果。此外,基于不正确指定的参数模型的外生性检验可能会产生误导性的结果。本文提出了一种外生性检验,它不假设结构函数属于已知的有限维参数族,也不需要对该函数进行非参数估计。后一个性质很重要,因为由于不适定逆问题,基于结构函数的非参数估计量的检验具有低功率。当结构函数与条件分位数函数在一组非零概率上不同时,本文给出的检验是一致的。该检验在与条件分位数函数相差0 (n-1/2)的一大类结构函数上具有非平凡幂。蒙特卡罗实验结果说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1