Nonlinear Dynamic States’ Estimation and Prediction Using Polynomial Predictive Modeling

IF 2.1 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Canadian Journal of Electrical and Computer Engineering Pub Date : 2023-06-08 DOI:10.1109/ICJECE.2023.3260830
Dileep Sivaraman;Songpol Ongwattanakul;Jackrit Suthakorn;Branesh M. Pillai
{"title":"Nonlinear Dynamic States’ Estimation and Prediction Using Polynomial Predictive Modeling","authors":"Dileep Sivaraman;Songpol Ongwattanakul;Jackrit Suthakorn;Branesh M. Pillai","doi":"10.1109/ICJECE.2023.3260830","DOIUrl":null,"url":null,"abstract":"In motion-control applications, noise and dynamic nonlinearities influence the performance of control systems and lead to unpredictable disturbances. The dc servo motors used in motion control applications should have precise control methods to achieve the desired responses. Therefore, predicting and compensating for the disturbance are essential for increasing system robustness and achieving high precision and fast reaction. This article introduces the polynomial predictive filtering (PPF) method to estimate the states of a system using polynomial extrapolation of consecutive and evenly spaced sensor data. Acceleration-/torque-based experiments are conducted to validate the effectiveness and viability of the proposed method. The difference between the real-time sensor data and the PPF-based predicted value shows a standard deviation of less than 0.15 and \n<inline-formula> <tex-math>$1 \\times 10^{-5}$ </tex-math></inline-formula>\n for the velocity and disturbance torque, respectively.","PeriodicalId":100619,"journal":{"name":"IEEE Canadian Journal of Electrical and Computer Engineering","volume":"46 3","pages":"185-195"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Canadian Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10146201/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In motion-control applications, noise and dynamic nonlinearities influence the performance of control systems and lead to unpredictable disturbances. The dc servo motors used in motion control applications should have precise control methods to achieve the desired responses. Therefore, predicting and compensating for the disturbance are essential for increasing system robustness and achieving high precision and fast reaction. This article introduces the polynomial predictive filtering (PPF) method to estimate the states of a system using polynomial extrapolation of consecutive and evenly spaced sensor data. Acceleration-/torque-based experiments are conducted to validate the effectiveness and viability of the proposed method. The difference between the real-time sensor data and the PPF-based predicted value shows a standard deviation of less than 0.15 and $1 \times 10^{-5}$ for the velocity and disturbance torque, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多项式预测模型的非线性动态状态估计与预测
在运动控制应用中,噪声和动态非线性影响控制系统的性能,并导致不可预测的扰动。运动控制应用中使用的直流伺服电机应具有精确的控制方法,以实现所需的响应。因此,对扰动进行预测和补偿对于提高系统鲁棒性、实现高精度和快速反应至关重要。本文介绍了多项式预测滤波(PPF)方法,该方法使用连续均匀间隔传感器数据的多项式外推来估计系统的状态。基于加速度/转矩的实验验证了该方法的有效性和可行性。实时传感器数据和基于PPF的预测值之间的差异显示,速度和扰动扭矩的标准偏差分别小于0.15和$1\x10^{-5}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Canadian Journal of Electrical and Computer Engineering Green Electricity Share Enhancement Through Rooftop Solar PV System on Institutional Sheds Enhanced Validation of Intelligent Control Algorithms in AC Microgrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1