A survey on algorithms for intelligent computing and smart city applications

IF 7.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Big Data Mining and Analytics Pub Date : 2021-03-12 DOI:10.26599/BDMA.2020.9020029
Zhao Tong;Feng Ye;Ming Yan;Hong Liu;Sunitha Basodi
{"title":"A survey on algorithms for intelligent computing and smart city applications","authors":"Zhao Tong;Feng Ye;Ming Yan;Hong Liu;Sunitha Basodi","doi":"10.26599/BDMA.2020.9020029","DOIUrl":null,"url":null,"abstract":"With the rapid development of human society, the urbanization of the world's population is also progressing rapidly. Urbanization has brought many challenges and problems to the development of cities. For example, the urban population is under excessive pressure, various natural resources and energy are increasingly scarce, and environmental pollution is increasing, etc. However, the original urban model has to be changed to enable people to live in greener and more sustainable cities, thus providing them with a more convenient and comfortable living environment. The new urban framework, the smart city, provides excellent opportunities to meet these challenges, while solving urban problems at the same time. At this stage, many countries are actively responding to calls for smart city development plans. This paper investigates the current stage of the smart city. First, it introduces the background of smart city development and gives a brief definition of the concept of the smart city. Second, it describes the framework of a smart city in accordance with the given definition. Finally, various intelligent algorithms to make cities smarter, along with specific examples, are discussed and analyzed.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"4 3","pages":"155-172"},"PeriodicalIF":7.7000,"publicationDate":"2021-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9430128/09430132.pdf","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9430132/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 49

Abstract

With the rapid development of human society, the urbanization of the world's population is also progressing rapidly. Urbanization has brought many challenges and problems to the development of cities. For example, the urban population is under excessive pressure, various natural resources and energy are increasingly scarce, and environmental pollution is increasing, etc. However, the original urban model has to be changed to enable people to live in greener and more sustainable cities, thus providing them with a more convenient and comfortable living environment. The new urban framework, the smart city, provides excellent opportunities to meet these challenges, while solving urban problems at the same time. At this stage, many countries are actively responding to calls for smart city development plans. This paper investigates the current stage of the smart city. First, it introduces the background of smart city development and gives a brief definition of the concept of the smart city. Second, it describes the framework of a smart city in accordance with the given definition. Finally, various intelligent algorithms to make cities smarter, along with specific examples, are discussed and analyzed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能计算算法及智能城市应用综述
随着人类社会的快速发展,世界人口的城市化也在快速发展。城市化给城市发展带来了许多挑战和问题。例如,城市人口压力过大,各种自然资源和能源日益稀缺,环境污染加剧等。然而,必须改变原有的城市模式,让人们生活在更绿色、更可持续的城市,从而为他们提供更方便、更舒适的生活环境。新的城市框架,即智慧城市,提供了应对这些挑战的绝佳机会,同时解决了城市问题。现阶段,许多国家都在积极响应制定智慧城市发展计划的呼吁。本文研究了智慧城市的发展现状。首先,介绍了智慧城市发展的背景,简要界定了智慧城市的概念。其次,根据给出的定义描述了智慧城市的框架。最后,讨论和分析了使城市更智能的各种智能算法,并给出了具体的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Data Mining and Analytics
Big Data Mining and Analytics Computer Science-Computer Science Applications
CiteScore
20.90
自引率
2.20%
发文量
84
期刊介绍: Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge. Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications. Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more. With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.
期刊最新文献
Contents Front Cover Incremental Data Stream Classification with Adaptive Multi-Task Multi-View Learning Attention-Based CNN Fusion Model for Emotion Recognition During Walking Using Discrete Wavelet Transform on EEG and Inertial Signals Gender-Based Analysis of User Reactions to Facebook Posts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1