Chiaki Tanoue, K. Sugihara, Y. Tayama, Naoto Uramaru, Yoko Watanabe, S. Ohta, S. Kitamura
{"title":"Variability of Zaleplon 5-Oxidase Activity in Mice and Humans, and Inhibition by Raloxifene.","authors":"Chiaki Tanoue, K. Sugihara, Y. Tayama, Naoto Uramaru, Yoko Watanabe, S. Ohta, S. Kitamura","doi":"10.2174/1872312810666161227145358","DOIUrl":null,"url":null,"abstract":"BACKGROUND Zaleplon (ZAL) is a sedative-hypnotic agent, which is mainly metabolized to inactive 5-oxidized zaleplon (5-oxo-ZAL) and N-des-ethylated ZAL (des-ethyl-ZAL) in mice and humans. The former reaction is considered to be catalyzed by aldehyde oxidase present in liver cytosol. METHODS Here, we examined sex and strain differences of ZAL metabolism to 5-oxo-ZAL among four strains of mice, as well as the inter-individual variation in humans, in order to evaluate the variability of 5-oxo-ZAL-forming activity and its relationship with aldehyde oxidase activity. In mice, the activity in C57BL/6J strain was the highest, followed by C3H/He and BALB/c. The activity in DBA/2J was the lowest, being 2.3-fold lower than that of C57BL/6J mice. The activity of male mice was higher than that of female mice. Large inter-individual variations were observed among humans, with a range of 10- fold. Raloxifene, an inhibitor of aldehyde oxidase, markedly decreased the formation of 5-oxo-ZAL by liver cytosol of mice and humans. Further, the plasma level of 5-oxo-ZAL in mice was decreased when raloxifene was co-administered with ZAL. RESULTS Our results indicate that the formation of 5-oxo-ZAL from ZAL is mainly catalyzed by aldehyde oxidase in mice and humans, and the variability of 5-oxo-ZAL formation is due primarily to differences of aldehyde oxidase activity. CONCLUSION High inter-individual variability of ZAL 5-oxidase activity and potential for interaction of ZAL with other medicines that are inhibitors of aldehyde oxidase should be taken into consideration in clinical usage of ZAL.","PeriodicalId":11339,"journal":{"name":"Drug metabolism letters","volume":"10 4 1","pages":"278-285"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug metabolism letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1872312810666161227145358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
BACKGROUND Zaleplon (ZAL) is a sedative-hypnotic agent, which is mainly metabolized to inactive 5-oxidized zaleplon (5-oxo-ZAL) and N-des-ethylated ZAL (des-ethyl-ZAL) in mice and humans. The former reaction is considered to be catalyzed by aldehyde oxidase present in liver cytosol. METHODS Here, we examined sex and strain differences of ZAL metabolism to 5-oxo-ZAL among four strains of mice, as well as the inter-individual variation in humans, in order to evaluate the variability of 5-oxo-ZAL-forming activity and its relationship with aldehyde oxidase activity. In mice, the activity in C57BL/6J strain was the highest, followed by C3H/He and BALB/c. The activity in DBA/2J was the lowest, being 2.3-fold lower than that of C57BL/6J mice. The activity of male mice was higher than that of female mice. Large inter-individual variations were observed among humans, with a range of 10- fold. Raloxifene, an inhibitor of aldehyde oxidase, markedly decreased the formation of 5-oxo-ZAL by liver cytosol of mice and humans. Further, the plasma level of 5-oxo-ZAL in mice was decreased when raloxifene was co-administered with ZAL. RESULTS Our results indicate that the formation of 5-oxo-ZAL from ZAL is mainly catalyzed by aldehyde oxidase in mice and humans, and the variability of 5-oxo-ZAL formation is due primarily to differences of aldehyde oxidase activity. CONCLUSION High inter-individual variability of ZAL 5-oxidase activity and potential for interaction of ZAL with other medicines that are inhibitors of aldehyde oxidase should be taken into consideration in clinical usage of ZAL.
期刊介绍:
Drug Metabolism Letters publishes letters and research articles on major advances in all areas of drug metabolism and disposition. The emphasis is on publishing quality papers very rapidly by taking full advantage of the Internet technology both for the submission and review of manuscripts. The journal covers the following areas: In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites.