The Role of Litter Quality Feedbacks in Terrestrial Nitrogen and Phosphorus Cycling

Q2 Environmental Science Open Ecology Journal Pub Date : 2010-03-16 DOI:10.2174/1874213001003010014
J. M H Knops, D. Wedin, S. Naeem
{"title":"The Role of Litter Quality Feedbacks in Terrestrial Nitrogen and Phosphorus Cycling","authors":"J. M H Knops, D. Wedin, S. Naeem","doi":"10.2174/1874213001003010014","DOIUrl":null,"url":null,"abstract":"Many studies in ecosystem ecology argue for strong control of litter quality over nitrogen (N) cycling. We developed a model for temperate grasslands to test the importance of litter quality in decomposition for N and phosphorus (P) cycling based on the following premises. First, terrestrial N and P cycling differ fundamentally because N is a structural component of the soil organic matter (SOM), whereas P is not. Secondly, SOM has a much lower C:N ratio than litter inputs. Thirdly, litter decomposition follows an exponential decay with 20% of the original litter mass turning into SOM. Fourth, litter N concentration shows an exponential increase during decomposition, whereas P does not change and is released proportionally to the litter mass. Based on these premises we constructed a model which shows that 0.75% N is a critical initial litter concentration at which concentration all N is immobilized and no N is released from the litter. Thus at 0.75% N of the litter all net N mineralization is through SOM decomposition and not through litter decomposition. Phosphorus, in contrast, is primarily released in the early stages of litter decomposition. Empirical tests of these model predictions support the applicability of the model to temperate grassland ecosystems. This model predicts that N mineralization from SOM is much more important than mineralization from litter and that plant litter quality differences alone cannot explain ecosystem N cycling patterns. Phosphorus, in contrast, does cycle largely through litter decomposition, and plant litter quality differences are the dominant factor in determining ecosystem P cycling feedbacks.","PeriodicalId":39335,"journal":{"name":"Open Ecology Journal","volume":"3 1","pages":"14-25"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ecology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874213001003010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 12

Abstract

Many studies in ecosystem ecology argue for strong control of litter quality over nitrogen (N) cycling. We developed a model for temperate grasslands to test the importance of litter quality in decomposition for N and phosphorus (P) cycling based on the following premises. First, terrestrial N and P cycling differ fundamentally because N is a structural component of the soil organic matter (SOM), whereas P is not. Secondly, SOM has a much lower C:N ratio than litter inputs. Thirdly, litter decomposition follows an exponential decay with 20% of the original litter mass turning into SOM. Fourth, litter N concentration shows an exponential increase during decomposition, whereas P does not change and is released proportionally to the litter mass. Based on these premises we constructed a model which shows that 0.75% N is a critical initial litter concentration at which concentration all N is immobilized and no N is released from the litter. Thus at 0.75% N of the litter all net N mineralization is through SOM decomposition and not through litter decomposition. Phosphorus, in contrast, is primarily released in the early stages of litter decomposition. Empirical tests of these model predictions support the applicability of the model to temperate grassland ecosystems. This model predicts that N mineralization from SOM is much more important than mineralization from litter and that plant litter quality differences alone cannot explain ecosystem N cycling patterns. Phosphorus, in contrast, does cycle largely through litter decomposition, and plant litter quality differences are the dominant factor in determining ecosystem P cycling feedbacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
凋落物质量反馈在陆地氮磷循环中的作用
生态系统生态学的许多研究都认为凋落物质量对氮循环有很强的控制作用。基于以下前提,我们建立了温带草原凋落物质量模型,以检验凋落物质量对N和P循环分解的重要性。首先,陆地氮和磷循环存在根本差异,因为氮是土壤有机质(SOM)的结构成分,而磷不是。有机质的碳氮比明显低于凋落物。凋落物分解呈指数衰减,20%的原始凋落物质量变为SOM。凋落物N浓度在分解过程中呈指数增长,而P浓度不变化,与凋落物质量成比例释放。基于这些前提,我们构建了一个模型,表明0.75% N是凋落物的临界初始浓度,在该浓度下,所有N都被固定,没有N从凋落物中释放出来。因此,在0.75% N的凋落物中,所有净N矿化都是通过SOM分解而不是通过凋落物分解。相比之下,磷主要在凋落物分解的早期阶段释放。对这些模型预测结果的实证检验支持了该模型对温带草原生态系统的适用性。该模型预测SOM的氮矿化比凋落物的氮矿化更重要,单凭凋落物质量差异不能解释生态系统氮循环模式。相反,磷主要通过凋落物分解循环,凋落物质量差异是决定生态系统磷循环反馈的主导因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Ecology Journal
Open Ecology Journal Environmental Science-Environmental Science (all)
自引率
0.00%
发文量
0
期刊介绍: The Open Ecology Journal is an open access online journal which embraces the trans-disciplinary nature of ecology, seeking to publish original research articles, reviews, letters and guest edited single topic issues representing important scientific progress from all areas of ecology and its linkages to other fields. The journal also focuses on the basic principles of the natural environment and its conservation. Contributions may be based on any taxa, natural or artificial environments, biodiversity, spatial scales, temporal scales, and methods that advance this multi-faceted and dynamic science. The Open Ecology Journal also considers empirical and theoretical studies that promote the construction of a broadly applicable conceptual framework or that present rigorous tests or novel applications of ecological theory.
期刊最新文献
ABUNDANCE OF INSECT POLLINATORS IN A MUSTARD FIELD AT DINAJPUR IN BANGLADESH DIETARY DICALCIUM PHOSPHATE SUPPLEMENTATION ENHANCES PRODUCTIVE AND REPRODUCTIVE PERFORMANCES OF CROSSBRED AND LOCAL DAIRY COWS RUGOSE SPIRALING WHITEFLY INFESTATION ON COCONUT: THREATS AND REMEDY ECO-FRIENDLY MANAGEMENT OF ANTHRACNOSE OF CHILI USING FORMULATED TRICHODERMA AND INDIGENOUS MEDICINAL PLANT MUNGBEAN VARIETIES EXPRESSED VARIATION IN MORPHOPHYSIOLOGICAL TRAITS AND YIELD UNDER WATER STRESS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1