{"title":"How Foraging Behaviour and Resource Partitioning Can Drive the Evolution of Flowers and the Structure of Pollination Networks","authors":"M. Rodríguez-Gironés, L. Santamaría","doi":"10.2174/1874213001003040001","DOIUrl":null,"url":null,"abstract":"Many flowers are visited by a large array of pollinators, often belonging to different taxonomic groups, and many pollinator species visit a wide array of flowers with different morphologies. This observation has led pollination ecologists to question the role played by pollinators in flower diversification and the extent to which floral similarities reflect convergent evolution to specific pollinator assemblages rather than other factors, such as phylogenetic constraints. In this paper, we review several ecological and evolutionary models that help to explain how pollinators can play a key role in floral evolution despite heterogeneities in plant-pollinator interactions. Our basic tenant is that, in animal pollinated species, the trajectory of pollen grains is determined by the foraging strategy of pollinators. Starting from a first approximation based on optimal foraging theory, ecological models related to the principles behind the ideal free distribution can be used to predict differences in floral and pollinator traits that will lead to resource partitioning. Building upon these results, evolutionary models based on game theory can be used to predict changes in traits of flowers and pollinators. These models show that pollinators can drive the evolution of floral divergence in the presence of behavioural noise and temporal variability in the composition of pollinator ensembles.","PeriodicalId":39335,"journal":{"name":"Open Ecology Journal","volume":"3 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ecology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874213001003040001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 38
Abstract
Many flowers are visited by a large array of pollinators, often belonging to different taxonomic groups, and many pollinator species visit a wide array of flowers with different morphologies. This observation has led pollination ecologists to question the role played by pollinators in flower diversification and the extent to which floral similarities reflect convergent evolution to specific pollinator assemblages rather than other factors, such as phylogenetic constraints. In this paper, we review several ecological and evolutionary models that help to explain how pollinators can play a key role in floral evolution despite heterogeneities in plant-pollinator interactions. Our basic tenant is that, in animal pollinated species, the trajectory of pollen grains is determined by the foraging strategy of pollinators. Starting from a first approximation based on optimal foraging theory, ecological models related to the principles behind the ideal free distribution can be used to predict differences in floral and pollinator traits that will lead to resource partitioning. Building upon these results, evolutionary models based on game theory can be used to predict changes in traits of flowers and pollinators. These models show that pollinators can drive the evolution of floral divergence in the presence of behavioural noise and temporal variability in the composition of pollinator ensembles.
期刊介绍:
The Open Ecology Journal is an open access online journal which embraces the trans-disciplinary nature of ecology, seeking to publish original research articles, reviews, letters and guest edited single topic issues representing important scientific progress from all areas of ecology and its linkages to other fields. The journal also focuses on the basic principles of the natural environment and its conservation. Contributions may be based on any taxa, natural or artificial environments, biodiversity, spatial scales, temporal scales, and methods that advance this multi-faceted and dynamic science. The Open Ecology Journal also considers empirical and theoretical studies that promote the construction of a broadly applicable conceptual framework or that present rigorous tests or novel applications of ecological theory.