Recommendation System with Biclustering

IF 7.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Big Data Mining and Analytics Pub Date : 2022-07-18 DOI:10.26599/BDMA.2022.9020012
Jianjun Sun;Yu Zhang
{"title":"Recommendation System with Biclustering","authors":"Jianjun Sun;Yu Zhang","doi":"10.26599/BDMA.2022.9020012","DOIUrl":null,"url":null,"abstract":"The massive growth of online commercial data has raised the request for an automatic recommender system to benefit both users and merchants. One of the most frequently used recommendation methods is collaborative filtering, but its accuracy is limited by the sparsity of the rating dataset. Most existing collaborative filtering methods consider all features when calculating user/item similarity and ignore much local information. In collaborative filtering, selecting neighbors and determining users' similarities are the most important parts. For the selection of better neighbors, this study proposes a novel biclustering method based on modified fuzzy adaptive resonance theory. To reflect the similarity between users, a new measure that considers the effect of the number of users' common items is proposed. Specifically, the proposed novel biclustering method is first adopted to obtain local similarity and local prediction. Second, item-based collaborative filtering is used to generate global predictions. Finally, the two resultant predictions are fused to obtain a final one. Experiment results demonstrate that the proposed method outperforms state-of-the-art models in terms of several aspects on three benchmark datasets.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"5 4","pages":"282-293"},"PeriodicalIF":7.7000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9832761/09832768.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9832768/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

The massive growth of online commercial data has raised the request for an automatic recommender system to benefit both users and merchants. One of the most frequently used recommendation methods is collaborative filtering, but its accuracy is limited by the sparsity of the rating dataset. Most existing collaborative filtering methods consider all features when calculating user/item similarity and ignore much local information. In collaborative filtering, selecting neighbors and determining users' similarities are the most important parts. For the selection of better neighbors, this study proposes a novel biclustering method based on modified fuzzy adaptive resonance theory. To reflect the similarity between users, a new measure that considers the effect of the number of users' common items is proposed. Specifically, the proposed novel biclustering method is first adopted to obtain local similarity and local prediction. Second, item-based collaborative filtering is used to generate global predictions. Finally, the two resultant predictions are fused to obtain a final one. Experiment results demonstrate that the proposed method outperforms state-of-the-art models in terms of several aspects on three benchmark datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双集群推荐系统
在线商业数据的巨大增长提出了对自动推荐系统的要求,以造福用户和商家。最常用的推荐方法之一是协同过滤,但其准确性受到评级数据集稀疏性的限制。大多数现有的协同过滤方法在计算用户/项目相似性时考虑了所有特征,忽略了许多局部信息。在协同过滤中,选择邻居和确定用户的相似性是最重要的部分。为了选择更好的邻居,本研究提出了一种基于改进的模糊自适应共振理论的新的双聚类方法。为了反映用户之间的相似性,提出了一种考虑用户常用项目数量影响的新度量方法。具体来说,首先采用所提出的新的双聚类方法来获得局部相似性和局部预测。其次,基于项目的协同过滤用于生成全局预测。最后,将两个结果预测进行融合以获得最终预测。实验结果表明,在三个基准数据集上,所提出的方法在几个方面优于最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Data Mining and Analytics
Big Data Mining and Analytics Computer Science-Computer Science Applications
CiteScore
20.90
自引率
2.20%
发文量
84
期刊介绍: Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge. Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications. Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more. With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.
期刊最新文献
Contents Front Cover Incremental Data Stream Classification with Adaptive Multi-Task Multi-View Learning Attention-Based CNN Fusion Model for Emotion Recognition During Walking Using Discrete Wavelet Transform on EEG and Inertial Signals Gender-Based Analysis of User Reactions to Facebook Posts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1