Exploiting more associations between slots for multi-domain dialog state tracking

IF 7.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Big Data Mining and Analytics Pub Date : 2021-12-27 DOI:10.26599/BDMA.2021.9020013
Hui Bai;Yan Yang;Jie Wang
{"title":"Exploiting more associations between slots for multi-domain dialog state tracking","authors":"Hui Bai;Yan Yang;Jie Wang","doi":"10.26599/BDMA.2021.9020013","DOIUrl":null,"url":null,"abstract":"Dialog State Tracking (DST) aims to extract the current state from the conversation and plays an important role in dialog systems. Existing methods usually predict the value of each slot independently and do not consider the correlations among slots, which will exacerbate the data sparsity problem because of the increased number of candidate values. In this paper, we propose a multi-domain DST model that integrates slot-relevant information. In particular, certain connections may exist among slots in different domains, and their corresponding values can be obtained through explicit or implicit reasoning. Therefore, we use the graph adjacency matrix to determine the correlation between slots, so that the slots can incorporate more slot-value transformer information. Experimental results show that our approach has performed well on the Multi-domain Wizard-Of-Oz (MultiWOZ) 2.0 and MultiWOZ2.1 datasets, demonstrating the effectiveness and necessity of incorporating slot-relevant information.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"5 1","pages":"41-52"},"PeriodicalIF":7.7000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9663253/09663259.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9663259/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Dialog State Tracking (DST) aims to extract the current state from the conversation and plays an important role in dialog systems. Existing methods usually predict the value of each slot independently and do not consider the correlations among slots, which will exacerbate the data sparsity problem because of the increased number of candidate values. In this paper, we propose a multi-domain DST model that integrates slot-relevant information. In particular, certain connections may exist among slots in different domains, and their corresponding values can be obtained through explicit or implicit reasoning. Therefore, we use the graph adjacency matrix to determine the correlation between slots, so that the slots can incorporate more slot-value transformer information. Experimental results show that our approach has performed well on the Multi-domain Wizard-Of-Oz (MultiWOZ) 2.0 and MultiWOZ2.1 datasets, demonstrating the effectiveness and necessity of incorporating slot-relevant information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用插槽之间的更多关联进行多域对话框状态跟踪
对话状态跟踪(DST)旨在从对话中提取当前状态,在对话系统中发挥着重要作用。现有的方法通常独立地预测每个时隙的值,而不考虑时隙之间的相关性,这将由于候选值的数量增加而加剧数据稀疏性问题。在本文中,我们提出了一个集成时隙相关信息的多域DST模型。特别地,不同域中的槽之间可能存在某些连接,并且可以通过显式或隐式推理来获得它们对应的值。因此,我们使用图邻接矩阵来确定槽之间的相关性,以便槽可以包含更多的槽值变换器信息。实验结果表明,我们的方法在多域Wizard Of Oz(MultiWOZ)2.0和MultiWOZ2.1数据集上表现良好,证明了引入时隙相关信息的有效性和必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Data Mining and Analytics
Big Data Mining and Analytics Computer Science-Computer Science Applications
CiteScore
20.90
自引率
2.20%
发文量
84
期刊介绍: Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge. Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications. Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more. With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.
期刊最新文献
Contents Front Cover Incremental Data Stream Classification with Adaptive Multi-Task Multi-View Learning Attention-Based CNN Fusion Model for Emotion Recognition During Walking Using Discrete Wavelet Transform on EEG and Inertial Signals Gender-Based Analysis of User Reactions to Facebook Posts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1