Using Chou’s Pseudo Amino Acid Composition and Machine LearningMethod to Predict the Antiviral Peptides

Q3 Computer Science Open Bioinformatics Journal Pub Date : 2015-03-31 DOI:10.2174/1875036201509010013
M. Zare, H. Mohabatkar, Fatemeh Faramarzi, Majid Mohammad Beigi, M. Behbahani
{"title":"Using Chou’s Pseudo Amino Acid Composition and Machine LearningMethod to Predict the Antiviral Peptides","authors":"M. Zare, H. Mohabatkar, Fatemeh Faramarzi, Majid Mohammad Beigi, M. Behbahani","doi":"10.2174/1875036201509010013","DOIUrl":null,"url":null,"abstract":"Traditional antiviral therapies are expensive, limitedly available, and cause several side effects. Currently, de- signing antiviral peptides is very important, because these peptides interfere with the key stage of virus life cycle. Most of the antiviral peptides are derived from viral proteins for example peptide derived from HIV-1 capsid protein. Because of the importance of these peptides, in this study the concept of pseudo-amino acid composition (PseAAC) and machine learning methods are used to classify or identify antiviral peptides.","PeriodicalId":38956,"journal":{"name":"Open Bioinformatics Journal","volume":"9 1","pages":"13-19"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Bioinformatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875036201509010013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 21

Abstract

Traditional antiviral therapies are expensive, limitedly available, and cause several side effects. Currently, de- signing antiviral peptides is very important, because these peptides interfere with the key stage of virus life cycle. Most of the antiviral peptides are derived from viral proteins for example peptide derived from HIV-1 capsid protein. Because of the importance of these peptides, in this study the concept of pseudo-amino acid composition (PseAAC) and machine learning methods are used to classify or identify antiviral peptides.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用Chou的伪氨基酸组成和机器学习方法预测抗病毒肽
传统的抗病毒疗法价格昂贵,可用性有限,并且会产生一些副作用。目前,设计抗病毒肽是非常重要的,因为这些肽干扰病毒生命周期的关键阶段。大多数抗病毒肽来源于病毒蛋白,例如来源于HIV-1衣壳蛋白的肽。由于这些肽的重要性,在本研究中,伪氨基酸组成(PseAAC)的概念和机器学习方法被用于分类或识别抗病毒肽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Bioinformatics Journal
Open Bioinformatics Journal Computer Science-Computer Science (miscellaneous)
CiteScore
2.40
自引率
0.00%
发文量
4
期刊介绍: The Open Bioinformatics Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, letters, clinical trial studies and guest edited single topic issues in all areas of bioinformatics and computational biology. The coverage includes biomedicine, focusing on large data acquisition, analysis and curation, computational and statistical methods for the modeling and analysis of biological data, and descriptions of new algorithms and databases. The Open Bioinformatics Journal, a peer reviewed journal, is an important and reliable source of current information on the developments in the field. The emphasis will be on publishing quality articles rapidly and freely available worldwide.
期刊最新文献
Decision-making Support System for Predicting and Eliminating Malnutrition and Anemia Immunoinformatics Approach for the Design of Chimeric Vaccine Against Whitmore Disease A New Deep Learning Model based on Neuroimaging for Predicting Alzheimer's Disease Early Prediction of Covid-19 Samples from Chest X-ray Images using Deep Learning Approach Electronic Health Record (EHR) System Development for Study on EHR Data-based Early Prediction of Diabetes Using Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1