{"title":"Semantic Web and Internet of Things: Challenges, Applications and Perspectives","authors":"Fatima Zahra Amara;Mounir Hemam;Meriem Djezzar;Moufida Maimor","doi":"10.13052/jicts2245-800X.1029","DOIUrl":null,"url":null,"abstract":"The apparent growth of the internet of things (IoT) has allowed its deployment in many domains. The IoT devices sense their surroundings and transmit the data via the Web. According to statistics, due to the proliferation of smart devices, the number of active IoT devices is expected to exceed 25.4 billion by 2030.\n<sup>1</sup>\n<sup>1</sup>\nhttps://dataprot.net/statistics/iot-statistics/ A large number of IoT objects gather an enormous amount of raw data. The data generated by various IoT objects and sensors are heterogeneous, with varying types and formats. Therefore, it is difficult for IoT systems to share and reuse raw IoT data, which causes the problem of lack of interoperability. The lack of interoperability in IoT systems creates a problematic issue that prevents IoT systems from performing well. To address this issue, data modeling and knowledge representation using semantic web technologies may be an appropriate solution to give meaning to raw IoT data and convert it to an enriched data format. The primary goal of this research section is to highlight the best outcomes for semantic interoperability among IoT systems, which can serve as a guideline for future studies via the presentation of a literature review on semantic interoperability for Internet of Things systems, including challenges, prospects, and recent work. The paper also provides an overview of the application of semantic web technologies in IoT systems, such as specific ontologies, frameworks, and application domains that use semantic technologies in the IoT areas to solve interoperability and heterogeneity problems.","PeriodicalId":36697,"journal":{"name":"Journal of ICT Standardization","volume":"10 2","pages":"261-291"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/10251929/10254727/10255413.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Standardization","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10255413/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
The apparent growth of the internet of things (IoT) has allowed its deployment in many domains. The IoT devices sense their surroundings and transmit the data via the Web. According to statistics, due to the proliferation of smart devices, the number of active IoT devices is expected to exceed 25.4 billion by 2030.
11
https://dataprot.net/statistics/iot-statistics/ A large number of IoT objects gather an enormous amount of raw data. The data generated by various IoT objects and sensors are heterogeneous, with varying types and formats. Therefore, it is difficult for IoT systems to share and reuse raw IoT data, which causes the problem of lack of interoperability. The lack of interoperability in IoT systems creates a problematic issue that prevents IoT systems from performing well. To address this issue, data modeling and knowledge representation using semantic web technologies may be an appropriate solution to give meaning to raw IoT data and convert it to an enriched data format. The primary goal of this research section is to highlight the best outcomes for semantic interoperability among IoT systems, which can serve as a guideline for future studies via the presentation of a literature review on semantic interoperability for Internet of Things systems, including challenges, prospects, and recent work. The paper also provides an overview of the application of semantic web technologies in IoT systems, such as specific ontologies, frameworks, and application domains that use semantic technologies in the IoT areas to solve interoperability and heterogeneity problems.