Deep convolutional neural network classified the PNEUMONIA and Coronavirus diseases (COVID-19) by softmax nonlinearity function

M. H. Alameady, Maryim Omran Mosa, Amir A. Aljarrah, Huda Saleem Razzaq
{"title":"Deep convolutional neural network classified the PNEUMONIA and Coronavirus diseases (COVID-19) by softmax nonlinearity function","authors":"M. H. Alameady, Maryim Omran Mosa, Amir A. Aljarrah, Huda Saleem Razzaq","doi":"10.22075/ijnaa.2022.5923","DOIUrl":null,"url":null,"abstract":"A deep learning powerful models of machine learning indicated better performance as precision and speed for images classification. The purpose of this paper is the detection of patients suspected of pneumonia and a novel coronavirus. Convolutional Neural Network (CNN) is utilized for features extract and it classifies, where CNN classify features into three classes are COVID-19, NORMAL, and PNEUMONIA. In CNN updating weights by CNN backpropagation and SGDM optimization algorithms in the training stage. The performance of CNN on the dataset is a combination between Chest X-Ray dataset (1583-NORMAL images and 4272-PNEUMONIA images) and COVID-19 dataset (126-images) for automatically anticipate whether a patient has COVID-19 or PNEUMONIA, where accuracy 94.31% and F1-Score 88.48% in case 60% training, 20% testing, and 20% validation.","PeriodicalId":14240,"journal":{"name":"International Journal of Nonlinear Analysis and Applications","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/ijnaa.2022.5923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

A deep learning powerful models of machine learning indicated better performance as precision and speed for images classification. The purpose of this paper is the detection of patients suspected of pneumonia and a novel coronavirus. Convolutional Neural Network (CNN) is utilized for features extract and it classifies, where CNN classify features into three classes are COVID-19, NORMAL, and PNEUMONIA. In CNN updating weights by CNN backpropagation and SGDM optimization algorithms in the training stage. The performance of CNN on the dataset is a combination between Chest X-Ray dataset (1583-NORMAL images and 4272-PNEUMONIA images) and COVID-19 dataset (126-images) for automatically anticipate whether a patient has COVID-19 or PNEUMONIA, where accuracy 94.31% and F1-Score 88.48% in case 60% training, 20% testing, and 20% validation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度卷积神经网络利用softmax非线性函数对肺炎和新冠肺炎进行分类
深度学习强大的机器学习模型在图像分类的精度和速度方面表现出更好的性能。本文的目的是检测疑似肺炎和新型冠状病毒的患者。卷积神经网络(Convolutional Neural Network, CNN)用于特征提取和分类,CNN将特征分为COVID-19、NORMAL、肺炎三类。在CNN中,在训练阶段通过CNN反向传播和SGDM优化算法更新权值。CNN在数据集上的表现是将胸部x射线数据集(1583-NORMAL图像和4272-PNEUMONIA图像)和COVID-19数据集(126-images)结合在一起,自动预测患者是否患有COVID-19或肺炎,在60%的训练,20%的测试和20%的验证下,准确率为94.31%和F1-Score 88.48%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
160
期刊最新文献
Classes of certain analytic functions defining by subordinations Some common fixed point theorems for strict contractions Some common fixed point results of multivalued mappings on fuzzy metric space Some coupled coincidence and coupled common fixed point result in dislocated quasi b-metric spaces for rational type contraction mappings Fixed Point Results in Complex Valued Metric Spaces and an Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1