Simulation and Optimization of Artificial Neural Network Modeling for Prediction of Sorption Efficiency of Nanocellulose Fibers for Removal of Cd (II) Ions from Aqueous System
Abhishek Kardam, K. R. Raj, J. Arora, S. Srivastava
{"title":"Simulation and Optimization of Artificial Neural Network Modeling for Prediction of Sorption Efficiency of Nanocellulose Fibers for Removal of Cd (II) Ions from Aqueous System","authors":"Abhishek Kardam, K. R. Raj, J. Arora, S. Srivastava","doi":"10.2004/WJST.V11I6.625","DOIUrl":null,"url":null,"abstract":"Simulation and optimization of an Artificial Neural Network (ANN) for modeling biosorption studies of cadmium removal using nanocellulose fibers (NCFs) was carried out. Experimental studies led to the standardization of the optimum conditions for the removal of cadmium ions i.e. biomass dosage (0.5 g), test volume (200 ml), metal concentration (25 mg/l), pH (6.5) and contact time (40 min). A Single layer ANN model was developed to simulate the process and to predict the sorption efficiency of Cd (II) ions using NCFs. Different NN architectures were tested by varying network topology, resulting in excellent agreement between experiment outputs and ANN outputs. The findings indicated that ANN provided reasonable predictive performance for training, cross validation and testing data sets (R 2 = 0.998, 0.995, 0.992). A sensitivity analysis was carried out to assess the influence of different independent parameters on the biosorption efficiency, and pH > biomass dosage > metal concentration > contact time > test volume were found to be the most significant factors. Simulations based on the developed ANN model can estimate the behavior of the biosorption phenomenon process under different experimental conditions. doi: 10.14456/WJST.2014.4","PeriodicalId":38275,"journal":{"name":"Walailak Journal of Science and Technology","volume":"11 1","pages":"497-508"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Walailak Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2004/WJST.V11I6.625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 5
Abstract
Simulation and optimization of an Artificial Neural Network (ANN) for modeling biosorption studies of cadmium removal using nanocellulose fibers (NCFs) was carried out. Experimental studies led to the standardization of the optimum conditions for the removal of cadmium ions i.e. biomass dosage (0.5 g), test volume (200 ml), metal concentration (25 mg/l), pH (6.5) and contact time (40 min). A Single layer ANN model was developed to simulate the process and to predict the sorption efficiency of Cd (II) ions using NCFs. Different NN architectures were tested by varying network topology, resulting in excellent agreement between experiment outputs and ANN outputs. The findings indicated that ANN provided reasonable predictive performance for training, cross validation and testing data sets (R 2 = 0.998, 0.995, 0.992). A sensitivity analysis was carried out to assess the influence of different independent parameters on the biosorption efficiency, and pH > biomass dosage > metal concentration > contact time > test volume were found to be the most significant factors. Simulations based on the developed ANN model can estimate the behavior of the biosorption phenomenon process under different experimental conditions. doi: 10.14456/WJST.2014.4
期刊介绍:
The Walailak Journal of Science and Technology (Walailak J. Sci. & Tech. or WJST), is a peer-reviewed journal covering all areas of science and technology, launched in 2004. It is published 12 Issues (Monthly) by the Institute of Research and Innovation of Walailak University. The scope of the journal includes the following areas of research : - Natural Sciences: Biochemistry, Chemical Engineering, Chemistry, Materials Science, Mathematics, Molecular Biology, Physics and Astronomy. -Life Sciences: Allied Health Sciences, Biomedical Sciences, Dentistry, Genetics, Immunology and Microbiology, Medicine, Neuroscience, Nursing, Pharmaceutics, Psychology, Public Health, Tropical Medicine, Veterinary. -Applied Sciences: Agricultural, Aquaculture, Biotechnology, Computer Science, Cybernetics, Earth and Planetary, Energy, Engineering, Environmental, Food Science, Information Technology, Meat Science, Nanotechnology, Plant Sciences, Systemics