D. Cooper, Mohammed Y. Ali, M. Searle, A. Al-Lazki
{"title":"Salt intrusions in Jabal Qumayrah, northern Oman Mountains: Implications from structural and gravity investigations","authors":"D. Cooper, Mohammed Y. Ali, M. Searle, A. Al-Lazki","doi":"10.2113/geoarabia1802141","DOIUrl":null,"url":null,"abstract":"\n The Jabal Qumayrah area, 50 km ESE of Al Ain and Buraimi, preserves a culmination of Jurassic and Cretaceous continental slope deposits (Sumeini Group) that was emplaced during the Late Cretaceous onto the Oman margin with other Neo-Tethyan units and the Semail Ophiolite. Almost uniquely in the Oman Mountains, Jabal Qumayrah also contains outcrops of gypsum and anhydrite that occur as a central complex from which laterally discontinuous linear and arcuate outcrops extend up to 4 km to the northwest and south. The gypsum and anhydrite bodies contain sedimentary clasts and rafts, which show close affinities with the local Sumeini Group host rock. There are no sedimentary features that indicate the evaporites were deposited in situ, either as part of, or unconformably overlying the Sumeini Group. Boundaries with the host rock are either high-angle faults or steep and intrusive, with significant dissolution of host rock limestones. Two gravity transects across the area indicate the areas of gypsum and anhydrite lie on a gravity low, compatible with an elongated, high-level body concentrated along the main N-S axis of the Jabal Qumayrah dome. Taken together, these features point towards an intrusive origin for the evaporite bodies in Jabal Qumayrah. While the sub-surface is poorly constrained, the central complex is interpreted as representing the deeply weathered top of a salt diapir, whose emplacement had a strong tectonic fault-driven component. The smaller, discontinuous exposures to the northwest and south are interpreted as pods of gypsum and anhydrite that were injected along faults. The absence of other evaporite minerals, in particular halite, is attributed to deep weathering and dissolution similar to that seen at the surface-piercing salt domes of the Ghaba Salt Basin in central Oman.\n In the absence of unequivocal dating evidence, the regional context suggests the intrusion may be derived from evaporites within the Ediacaran–Early Cambrian Ara Group. These form large deposits in the Fahud and Ghaba salt basins to the southwest of the Oman Mountains and the Hormuz Salt Basin to the north. The Jabal Qumayrah area may represent another, smaller basin or an extension to the Fahud Basin. The Jabal Qumayrah intrusion does not contain rafts of Ara Group limestones, which characterise the salt diapirs of the Ghaba Salt Basin, but this is not considered diagnostic. Other regional evaporite units of Permian to Jurassic ages do not extend into the area of the Oman Mountains and are thus unlikely potential sources. There is no evidence to suggest the Jabal Qumayrah culmination was thrust over Cenozoic evaporites and this potential source is also discounted. The timing of intrusion is constrained by the boundary faults, which cut across and thus post-date structures related to the Late Cretaceous emplacement of the Sumeini Group of Jabal Qumayrah. There is no evidence of any movement since the unroofing and exposure of the salt intrusion, which began in the Late Miocene.","PeriodicalId":55118,"journal":{"name":"Geoarabia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoarabia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2113/geoarabia1802141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
The Jabal Qumayrah area, 50 km ESE of Al Ain and Buraimi, preserves a culmination of Jurassic and Cretaceous continental slope deposits (Sumeini Group) that was emplaced during the Late Cretaceous onto the Oman margin with other Neo-Tethyan units and the Semail Ophiolite. Almost uniquely in the Oman Mountains, Jabal Qumayrah also contains outcrops of gypsum and anhydrite that occur as a central complex from which laterally discontinuous linear and arcuate outcrops extend up to 4 km to the northwest and south. The gypsum and anhydrite bodies contain sedimentary clasts and rafts, which show close affinities with the local Sumeini Group host rock. There are no sedimentary features that indicate the evaporites were deposited in situ, either as part of, or unconformably overlying the Sumeini Group. Boundaries with the host rock are either high-angle faults or steep and intrusive, with significant dissolution of host rock limestones. Two gravity transects across the area indicate the areas of gypsum and anhydrite lie on a gravity low, compatible with an elongated, high-level body concentrated along the main N-S axis of the Jabal Qumayrah dome. Taken together, these features point towards an intrusive origin for the evaporite bodies in Jabal Qumayrah. While the sub-surface is poorly constrained, the central complex is interpreted as representing the deeply weathered top of a salt diapir, whose emplacement had a strong tectonic fault-driven component. The smaller, discontinuous exposures to the northwest and south are interpreted as pods of gypsum and anhydrite that were injected along faults. The absence of other evaporite minerals, in particular halite, is attributed to deep weathering and dissolution similar to that seen at the surface-piercing salt domes of the Ghaba Salt Basin in central Oman.
In the absence of unequivocal dating evidence, the regional context suggests the intrusion may be derived from evaporites within the Ediacaran–Early Cambrian Ara Group. These form large deposits in the Fahud and Ghaba salt basins to the southwest of the Oman Mountains and the Hormuz Salt Basin to the north. The Jabal Qumayrah area may represent another, smaller basin or an extension to the Fahud Basin. The Jabal Qumayrah intrusion does not contain rafts of Ara Group limestones, which characterise the salt diapirs of the Ghaba Salt Basin, but this is not considered diagnostic. Other regional evaporite units of Permian to Jurassic ages do not extend into the area of the Oman Mountains and are thus unlikely potential sources. There is no evidence to suggest the Jabal Qumayrah culmination was thrust over Cenozoic evaporites and this potential source is also discounted. The timing of intrusion is constrained by the boundary faults, which cut across and thus post-date structures related to the Late Cretaceous emplacement of the Sumeini Group of Jabal Qumayrah. There is no evidence of any movement since the unroofing and exposure of the salt intrusion, which began in the Late Miocene.
期刊介绍:
Cessation. Published from 1996 to 2015, GeoArabia, The Journal of the Middle Eastern Geosciences was a quarterly journal covering the petroleum geosciences in the Middle East. The journal covers subjects such as: - sedimentology - tectonics - geophysics - petroleum reservoir characterization