{"title":"Magnetite solubility and phase stability in alkaline media at elevated temperatures","authors":"S. Ziemniak, M. Jones, K. Combs","doi":"10.2172/34346","DOIUrl":null,"url":null,"abstract":"AbstractA platinum-lined flowing autocláve facility was used to investigate the solubility behavior of magnetite (Fe3O4) in alkaline sodium phosphate and ammonium hydroxide solutions between 21 and 288°C. Measured iron solubilities were interpreted via a Fe(II)/Fe(III) ion hydroxo-, phosphato-, and ammino-complexing model and thermodynamic functions for these equilibria were obtained from a least-squares analysis of the data. A total of 14 iron ion species were fitted. Complexing equilibria are reported for 8 new species: Fe(OH)(HPO4)−, Fe(OH)2(HPO4)2−, Fe(OH)3(HPO4)2−, Fe(OH)(NH3)+, Fe(OH)2(PO4)3−, Fe(OH)4(HPO4)3−, Fe(OH)2(H2PO4)−, and Fe(OH)3(H2PO4)3−. At elevated temperatures, hydrolysis and phosphato complexing tended to stabilize Fe(III) relative to Fe(II), as evidenced by free energy changes fitted to the oxidation reactions.\n$$\\begin{gathered} Fe(OH)_3^ - + H_2 O_ \\leftarrow ^ \\to Fe(OH)_4^ - + (1/2)H_2 (g) \\hfill \\\\ Fe(OH)_2^{} (HPO_4 )^{2 - } + H_2 O_ \\leftarrow ^ \\to Fe(OH)_3 (HPO_4 )^{2 - } + (1/2)H_2 (g) \\hfill \\\\ \\end{gathered}$$\n For temperatures below 83°C and for a dissolved hydrogen concentration of 234 μmol-kg−1, the activity of ferrous iron in aqueous solution is controlled by a hydrous Fe(II) oxide solid phase rather than magnetite.","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"24 1","pages":"837-877"},"PeriodicalIF":1.3000,"publicationDate":"1994-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solution Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2172/34346","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 63
Abstract
AbstractA platinum-lined flowing autocláve facility was used to investigate the solubility behavior of magnetite (Fe3O4) in alkaline sodium phosphate and ammonium hydroxide solutions between 21 and 288°C. Measured iron solubilities were interpreted via a Fe(II)/Fe(III) ion hydroxo-, phosphato-, and ammino-complexing model and thermodynamic functions for these equilibria were obtained from a least-squares analysis of the data. A total of 14 iron ion species were fitted. Complexing equilibria are reported for 8 new species: Fe(OH)(HPO4)−, Fe(OH)2(HPO4)2−, Fe(OH)3(HPO4)2−, Fe(OH)(NH3)+, Fe(OH)2(PO4)3−, Fe(OH)4(HPO4)3−, Fe(OH)2(H2PO4)−, and Fe(OH)3(H2PO4)3−. At elevated temperatures, hydrolysis and phosphato complexing tended to stabilize Fe(III) relative to Fe(II), as evidenced by free energy changes fitted to the oxidation reactions.
$$\begin{gathered} Fe(OH)_3^ - + H_2 O_ \leftarrow ^ \to Fe(OH)_4^ - + (1/2)H_2 (g) \hfill \\ Fe(OH)_2^{} (HPO_4 )^{2 - } + H_2 O_ \leftarrow ^ \to Fe(OH)_3 (HPO_4 )^{2 - } + (1/2)H_2 (g) \hfill \\ \end{gathered}$$
For temperatures below 83°C and for a dissolved hydrogen concentration of 234 μmol-kg−1, the activity of ferrous iron in aqueous solution is controlled by a hydrous Fe(II) oxide solid phase rather than magnetite.
期刊介绍:
Journal of Solution Chemistry offers a forum for research on the physical chemistry of liquid solutions in such fields as physical chemistry, chemical physics, molecular biology, statistical mechanics, biochemistry, and biophysics. The emphasis is on papers in which the solvent plays a dominant rather than incidental role. Featured topics include experimental investigations of the dielectric, spectroscopic, thermodynamic, transport, or relaxation properties of both electrolytes and nonelectrolytes in liquid solutions.