Algoritmo para el descubrimiento del modelo organizacional utilizando el patrón paralelo segmentación de cauce

IF 0.1 Q4 ENGINEERING, MULTIDISCIPLINARY Revista Digital Lampsakos Pub Date : 2016-12-28 DOI:10.21501/21454086.1969
Lester Guerra-Denis, Alex Rivero-Botta, Ronny Álvarez-Pérez, Humberto Díaz-Pando
{"title":"Algoritmo para el descubrimiento del modelo organizacional utilizando el patrón paralelo segmentación de cauce","authors":"Lester Guerra-Denis, Alex Rivero-Botta, Ronny Álvarez-Pérez, Humberto Díaz-Pando","doi":"10.21501/21454086.1969","DOIUrl":null,"url":null,"abstract":"The progress made with the information technology and communications have resulted in a growth of all data stored and / or exchanged electronically. The process mining techniques are able to extract knowledge from the common-mind records events available in the current information systems. Likewise, parallel processing is a type of information processing, which allows multiple processes to run concurrently, achieving impressive powers of calculation. The work presented below is an algorithm design process mining Organizational Miner using the pipeline parallel pattern, according to its design operations in sequential run independently. The experiments conducted and results obtained with non-parametric tests Mann-Whitney hypothesis that the proposed solution yield decreases execution times relative to its sequential variant.","PeriodicalId":53826,"journal":{"name":"Revista Digital Lampsakos","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2016-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Digital Lampsakos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21501/21454086.1969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The progress made with the information technology and communications have resulted in a growth of all data stored and / or exchanged electronically. The process mining techniques are able to extract knowledge from the common-mind records events available in the current information systems. Likewise, parallel processing is a type of information processing, which allows multiple processes to run concurrently, achieving impressive powers of calculation. The work presented below is an algorithm design process mining Organizational Miner using the pipeline parallel pattern, according to its design operations in sequential run independently. The experiments conducted and results obtained with non-parametric tests Mann-Whitney hypothesis that the proposed solution yield decreases execution times relative to its sequential variant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用并行路径分割模式发现组织模型的算法
随着信息技术和通信的进步,所有以电子方式存储和/或交换的数据都在增长。过程挖掘技术能够从当前信息系统中可用的共同意识记录事件中提取知识。同样,并行处理是一种信息处理,它允许多个进程并发运行,从而获得令人印象深刻的计算能力。下面介绍的工作是一个使用管道并行模式挖掘组织Miner的算法设计过程,其设计操作按顺序独立运行。所进行的实验和非参数检验的结果表明,曼-惠特尼假设所提出的解决方案产量相对于其顺序变体减少了执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Digital Lampsakos
Revista Digital Lampsakos ENGINEERING, MULTIDISCIPLINARY-
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Métodos de Clapeyron y Cross para el análisis de vigas de inercia variable Ceramic waste in semi-dense asphalt mixtures: alternatives for low traffic roads in Colombia Manejo de residuos de construcción y demolición y economía circular: una revisión narrativa Conceptualización de resiliencia al cambio climático en cadenas agropecuarias de valor Desarrollo de un modelo predictivo de las propiedades mecánicas del suelo usando redes neuronales artificiales
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1