Defect detection of GFRP laminates by barker codedmodulation excitation infrared thermal imaging

IF 1.1 4区 工程技术 Q4 THERMODYNAMICS Thermal Science Pub Date : 2023-01-01 DOI:10.2298/tsci220807002t
Q. Tang, Ling Ran, Ze-Shen Qu, Chi-Wu Bub
{"title":"Defect detection of GFRP laminates by barker codedmodulation excitation infrared thermal imaging","authors":"Q. Tang, Ling Ran, Ze-Shen Qu, Chi-Wu Bub","doi":"10.2298/tsci220807002t","DOIUrl":null,"url":null,"abstract":"During the preparation and service of GFRP laminates, due to the influence of manufacturing process, it is easy to produce debonding defect. This paper expounds the basic principle and test process of infrared nondestructive testing, which using the barker code modulation of the thermal wave to identify the GFRP laminate debonding defect. Through the establishment of infrared thermal imaging testing system, this paper studies its detection effect on defects with different diameter, depth and diameter-to-depth ratio, processes the image sequence by using principal component analysis (PCA) and discrete Fourier transform (DFT) algorithms, and finally calculates and compares the processed signal-to-noise ratio (SNR). The results show that Barker code modulated thermal wave infrared detection can detect the debonding defects of GFRP laminates. Among them, the detection effect of 13-bit Barker coded modulation excitation is better, and the image processed by DFT has better recognition effect.","PeriodicalId":23125,"journal":{"name":"Thermal Science","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/tsci220807002t","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

During the preparation and service of GFRP laminates, due to the influence of manufacturing process, it is easy to produce debonding defect. This paper expounds the basic principle and test process of infrared nondestructive testing, which using the barker code modulation of the thermal wave to identify the GFRP laminate debonding defect. Through the establishment of infrared thermal imaging testing system, this paper studies its detection effect on defects with different diameter, depth and diameter-to-depth ratio, processes the image sequence by using principal component analysis (PCA) and discrete Fourier transform (DFT) algorithms, and finally calculates and compares the processed signal-to-noise ratio (SNR). The results show that Barker code modulated thermal wave infrared detection can detect the debonding defects of GFRP laminates. Among them, the detection effect of 13-bit Barker coded modulation excitation is better, and the image processed by DFT has better recognition effect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于巴克码调制激发红外热成像的GFRP层压板缺陷检测
GFRP层压板在制备和使用过程中,由于制造工艺的影响,容易产生脱粘缺陷。本文阐述了红外无损检测的基本原理和检测过程,利用热波的巴克码调制来识别玻璃钢层合板的剥离缺陷。本文通过建立红外热成像检测系统,研究其对不同直径、深度和径深比缺陷的检测效果,利用主成分分析(PCA)和离散傅立叶变换(DFT)算法对图像序列进行处理,最后计算并比较处理后的信噪比(SNR)。结果表明,巴克码调制热波红外检测能够检测出玻璃钢层合板的脱粘缺陷。其中,13位巴克编码调制激励检测效果较好,DFT处理后的图像识别效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Thermal Science
Thermal Science 工程技术-热力学
CiteScore
2.70
自引率
29.40%
发文量
399
审稿时长
5 months
期刊介绍: The main aims of Thermal Science to publish papers giving results of the fundamental and applied research in different, but closely connected fields: fluid mechanics (mainly turbulent flows), heat transfer, mass transfer, combustion and chemical processes in single, and specifically in multi-phase and multi-component flows in high-temperature chemically reacting flows processes present in thermal engineering, energy generating or consuming equipment, process and chemical engineering equipment and devices, ecological engineering, The important characteristic of the journal is the orientation to the fundamental results of the investigations of different physical and chemical processes, always jointly present in real conditions, and their mutual influence. To publish papers written by experts from different fields: mechanical engineering, chemical engineering, fluid dynamics, thermodynamics and related fields. To inform international scientific community about the recent, and most prominent fundamental results achieved in the South-East European region, and particularly in Serbia, and - vice versa - to inform the scientific community from South-East European Region about recent fundamental and applied scientific achievements in developed countries, serving as a basis for technology development. To achieve international standards of the published papers, by the engagement of experts from different countries in the International Advisory board.
期刊最新文献
Melting performance enhancement of FHD carreau non-Newtonian PCM in porous media: A geometrical evaluation Numerical study using a double grid to model the effect of the grooves of a vertical wall in a heated cavity on the natural convection of a nanofluid An experimental study on combustion and emissions characteristics in a dual-injection spark-assisted compression ignition engine fueled with PODE/gasoline Numerical analysis of injection parameters influence on experimental diesel engine performances and emissions using [CO] and [NOx] correlated by maximum in-cylinder pressure Portable air quality monitor based on low-cost sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1