Time Series Forecasting Using Holt-Winters Exponential Smoothing: Application to Abaca Fiber Data

Mary Pleños
{"title":"Time Series Forecasting Using Holt-Winters Exponential Smoothing: Application to Abaca Fiber Data","authors":"Mary Pleños","doi":"10.22630/prs.2022.22.2.6","DOIUrl":null,"url":null,"abstract":"This study utilized the data on abaca fiber production and used Holt-Winters model to forecast the abaca fiber production since the studied variable is characterized by a fairly strong intensity of seasonality. For the construction of forecasts, additive and multiplicative models were used. The most accurate forecasts were selected on the basis of Mean Square Error, Root Mean Square Error, Mean Absolute Percentage Error, and Mean Absolute Scaled Error. It was found that the multiplicative method had a higher accuracy, hence it was utilized to forecast the production for the next three years. According to the findings, the anticipated fiber production for 2021-2023 showed an increase up to the second quarter, but then declining afterwards.","PeriodicalId":34485,"journal":{"name":"Zeszyty Naukowe Szkoly Glownej Gospodarstwa Wiejskiego w Warszawie Problemy Rolnictwa Swiatowego","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeszyty Naukowe Szkoly Glownej Gospodarstwa Wiejskiego w Warszawie Problemy Rolnictwa Swiatowego","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/prs.2022.22.2.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study utilized the data on abaca fiber production and used Holt-Winters model to forecast the abaca fiber production since the studied variable is characterized by a fairly strong intensity of seasonality. For the construction of forecasts, additive and multiplicative models were used. The most accurate forecasts were selected on the basis of Mean Square Error, Root Mean Square Error, Mean Absolute Percentage Error, and Mean Absolute Scaled Error. It was found that the multiplicative method had a higher accuracy, hence it was utilized to forecast the production for the next three years. According to the findings, the anticipated fiber production for 2021-2023 showed an increase up to the second quarter, but then declining afterwards.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用冬至指数平滑进行时间序列预测:在Abaca纤维数据中的应用
由于研究变量具有较强的季节性,本研究利用abaca纤维产量数据,采用Holt-Winters模型对abaca纤维产量进行预测。为了构建预测,使用了加性和乘法模型。根据均方误差、均方根误差、平均绝对百分比误差和平均绝对比例误差选出最准确的预测。结果表明,乘法法具有较高的预测精度,可用于预测未来3年的产量。根据调查结果,预计2021-2023年的纤维产量在第二季度之前呈增长趋势,但随后下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
5
审稿时长
8 weeks
期刊最新文献
Access to Livelihood Capital and Food Security Status as Correlates to Empowerment Among Women on Irrigation Schemes in North-West Province, South Africa Novel Foods and EU Law: Facing Ethical Lines Charakterystyka zrównoważenia rozwoju biogospodarki w wymiarze ekonomicznym w Polsce na tle UE-28 i Niemiec Guatemalan Sugar Industry: Diversity and Trends Changes in the Vegetable Oil Market, with Particular Emphasis on Market Instability in Relation to the War in Ukraine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1