Artificial Intelligence-enabled Wearable Medical Devices, Clinical and Diagnostic Decision Support Systems, and Internet of Things-based Healthcare Applications in COVID-19 Prevention, Screening, and Treatment
{"title":"Artificial Intelligence-enabled Wearable Medical Devices, Clinical and Diagnostic Decision Support Systems, and Internet of Things-based Healthcare Applications in COVID-19 Prevention, Screening, and Treatment","authors":"R. Barnes","doi":"10.22381/ajmr8220211","DOIUrl":null,"url":null,"abstract":"Building our argument by drawing on data collected from Accenture, GlobalWebIndex, GoMo Health, KPMG, McKinsey, Oracle, Sermo, STAT, Statista, and Workplace Intelligence, we performed analyses and made estimates regarding how predictive big data analytics, body sensor networks, medical wearable devices, decision support systems, and wireless sensing applications can be harnessed in real-time continuous remote monitoring of patients vital signs configuring clinical data in pervasive mobile patient-centric healthcare. Introduction The extensive data of COVID-19 patients can be assimilated and inspected by cutting-edge machine learning algorithms to grasp the pattern of viral transmission, optimize diagnostic swiftness and precision, advance adequate therapeutic methods, and identify the most vulnerable individuals according to personalized genetic and physiological features. Methodology and Empirical Analysis Building our argument by drawing on data collected from Accenture, Global-WebIndex, GoMo Health, KPMG, McKinsey, Oracle, Sermo, STAT, Statista, and Workplace Intelligence, we performed analyses and made estimates regarding how predictive big data analytics, body sensor networks, medical wearable devices, decision support systems, and wireless sensing applications can be harnessed in real-time continuous remote monitoring of patients' vital signs configuring clinical data in pervasive mobile patient-centric healthcare. Study Design, Survey Methods, and Materials The interviews were conducted online and data were weighted by five variables (age, race/ethnicity, gender, education, and geographic region) using the Census Bureau's American Community Survey to reflect reliably and accurately the demographic composition of the United States.","PeriodicalId":91446,"journal":{"name":"American journal of medical research (New York, N.Y.)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of medical research (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22381/ajmr8220211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Building our argument by drawing on data collected from Accenture, GlobalWebIndex, GoMo Health, KPMG, McKinsey, Oracle, Sermo, STAT, Statista, and Workplace Intelligence, we performed analyses and made estimates regarding how predictive big data analytics, body sensor networks, medical wearable devices, decision support systems, and wireless sensing applications can be harnessed in real-time continuous remote monitoring of patients vital signs configuring clinical data in pervasive mobile patient-centric healthcare. Introduction The extensive data of COVID-19 patients can be assimilated and inspected by cutting-edge machine learning algorithms to grasp the pattern of viral transmission, optimize diagnostic swiftness and precision, advance adequate therapeutic methods, and identify the most vulnerable individuals according to personalized genetic and physiological features. Methodology and Empirical Analysis Building our argument by drawing on data collected from Accenture, Global-WebIndex, GoMo Health, KPMG, McKinsey, Oracle, Sermo, STAT, Statista, and Workplace Intelligence, we performed analyses and made estimates regarding how predictive big data analytics, body sensor networks, medical wearable devices, decision support systems, and wireless sensing applications can be harnessed in real-time continuous remote monitoring of patients' vital signs configuring clinical data in pervasive mobile patient-centric healthcare. Study Design, Survey Methods, and Materials The interviews were conducted online and data were weighted by five variables (age, race/ethnicity, gender, education, and geographic region) using the Census Bureau's American Community Survey to reflect reliably and accurately the demographic composition of the United States.