Direct phosphorylation events involved in HIF-α regulation: the role of GSK-3β

Daniela Mennerich, E. Dimova, T. Kietzmann
{"title":"Direct phosphorylation events involved in HIF-α regulation: the role of GSK-3β","authors":"Daniela Mennerich, E. Dimova, T. Kietzmann","doi":"10.2147/HP.S60703","DOIUrl":null,"url":null,"abstract":"Hypoxia-inducible factors (HIFs), consisting of α- and β-subunits, are critical regulators of the transcriptional response to hypoxia under both physiological and pathological conditions. To a large extent, the protein stability and the recruitment of coactivators to the C-terminal transactivation domain of the HIF α-subunits determine overall HIF activity. The regulation of HIF α-subunit protein stability and coactivator recruitment is mainly achieved by oxygen-dependent posttranslational hydroxylation of conserved proline and asparagine residues, respectively. Under hypoxia, the hydroxylation events are inhibited and HIF α-subunits stabilize, translocate to the nucleus, dimerize with the β-subunits, and trigger a transcriptional response. However, under normal oxygen conditions, HIF α-subunits can be activated by various growth and coagulation factors, hormones, cytokines, or stress factors implicating the involvement of different kinase pathways in their regulation, thereby making HIF-α-regulating kinases attractive therapeutic targets. From the kinases known to regulate HIF α-subunits, only a few phosphorylate HIF-α directly. Here, we review the direct phosphorylation of HIF-α with an emphasis on the role of glycogen synthase kinase-3β and the consequences for HIF-1α function.","PeriodicalId":73270,"journal":{"name":"Hypoxia (Auckland, N.Z.)","volume":"2 1","pages":"35 - 45"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/HP.S60703","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hypoxia (Auckland, N.Z.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/HP.S60703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Hypoxia-inducible factors (HIFs), consisting of α- and β-subunits, are critical regulators of the transcriptional response to hypoxia under both physiological and pathological conditions. To a large extent, the protein stability and the recruitment of coactivators to the C-terminal transactivation domain of the HIF α-subunits determine overall HIF activity. The regulation of HIF α-subunit protein stability and coactivator recruitment is mainly achieved by oxygen-dependent posttranslational hydroxylation of conserved proline and asparagine residues, respectively. Under hypoxia, the hydroxylation events are inhibited and HIF α-subunits stabilize, translocate to the nucleus, dimerize with the β-subunits, and trigger a transcriptional response. However, under normal oxygen conditions, HIF α-subunits can be activated by various growth and coagulation factors, hormones, cytokines, or stress factors implicating the involvement of different kinase pathways in their regulation, thereby making HIF-α-regulating kinases attractive therapeutic targets. From the kinases known to regulate HIF α-subunits, only a few phosphorylate HIF-α directly. Here, we review the direct phosphorylation of HIF-α with an emphasis on the role of glycogen synthase kinase-3β and the consequences for HIF-1α function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
参与HIF-α调控的直接磷酸化事件:GSK-3β的作用
缺氧诱导因子(hif)由α-和β-亚基组成,是生理和病理条件下对缺氧转录反应的关键调控因子。在很大程度上,蛋白质的稳定性和共激活因子在HIF α-亚基c端转激活域的募集决定了HIF的总体活性。HIF α-亚基蛋白稳定性和辅激活因子募集的调控主要通过对脯氨酸和天冬酰胺残基的翻译后氧依赖羟基化来实现。在缺氧条件下,羟基化事件被抑制,HIF α-亚基稳定,转移到细胞核,与β-亚基二聚,并引发转录反应。然而,在正常氧条件下,HIF α-亚基可被各种生长凝血因子、激素、细胞因子或应激因子激活,暗示其参与不同激酶途径的调控,从而使HIF α-调节激酶成为有吸引力的治疗靶点。从已知的调节HIF α-亚基的激酶中,只有少数直接磷酸化HIF-α。在这里,我们回顾了HIF-α的直接磷酸化,重点是糖原合成酶激酶-3β的作用以及对HIF-1α功能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Abstract IA-015: Hypoxia-induced SETX links replication stress with the unfolded protein response Abstract PO-033: Papaverine derivative smv-32 alleviates tumor hypoxia and radiosensitizes tumors by inhibiting mitochondrial metabolism Abstract PO-034: Changes in cancer associated fibroblast subsets following angiotensin II type I receptor blocker (ARB) treatment reduces transient hypoxia and radiation resistance Abstract IA-017: Chromatin and gene transcription in hypoxia Abstract IA-016: Metabolic deregulation drives a redox vulnerability in pancreatic cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1