Induction of long noncoding RNA MALAT1 in hypoxic mice

Aurélia Lelli, K. Nolan, S. Santambrogio, A. F. Gonçalves, Miriam J. Schönenberger, A. Guinot, I. Frew, H. H. Marti, D. Hoogewijs, R. Wenger
{"title":"Induction of long noncoding RNA MALAT1 in hypoxic mice","authors":"Aurélia Lelli, K. Nolan, S. Santambrogio, A. F. Gonçalves, Miriam J. Schönenberger, A. Guinot, I. Frew, H. H. Marti, D. Hoogewijs, R. Wenger","doi":"10.2147/HP.S90555","DOIUrl":null,"url":null,"abstract":"Long thought to be “junk DNA”, in recent years it has become clear that a substantial fraction of intergenic genomic DNA is actually transcribed, forming long noncoding RNA (lncRNA). Like mRNA, lncRNA can also be spliced, capped, and polyadenylated, affecting a multitude of biological processes. While the molecular mechanisms underlying the function of lncRNAs have just begun to be elucidated, the conditional regulation of lncRNAs remains largely unexplored. In genome-wide studies our group and others recently found hypoxic transcriptional induction of a subset of lncRNAs, whereof nuclear-enriched abundant/autosomal transcript 1 (NEAT1) and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) appear to be the lncRNAs most ubiquitously and most strongly induced by hypoxia in cultured cells. Hypoxia-inducible factor (HIF)-2 rather than HIF-1 seems to be the preferred transcriptional activator of these lncRNAs. For the first time, we also found strong induction primarily of MALAT1 in organs of mice exposed to inspiratory hypoxia. Most abundant hypoxic levels of MALAT1 lncRNA were found in kidney and testis. In situ hybridization revealed that the hypoxic induction in the kidney was confined to proximal rather than distal tubular epithelial cells. Direct oxygen-dependent regulation of MALAT1 lncRNA was confirmed using isolated primary kidney epithelial cells. In summary, high expression levels and acute, profound hypoxic induction of MALAT1 suggest a hitherto unrecognized role of this lncRNA in renal proximal tubular function.","PeriodicalId":73270,"journal":{"name":"Hypoxia (Auckland, N.Z.)","volume":"3 1","pages":"45 - 52"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/HP.S90555","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hypoxia (Auckland, N.Z.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/HP.S90555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

Long thought to be “junk DNA”, in recent years it has become clear that a substantial fraction of intergenic genomic DNA is actually transcribed, forming long noncoding RNA (lncRNA). Like mRNA, lncRNA can also be spliced, capped, and polyadenylated, affecting a multitude of biological processes. While the molecular mechanisms underlying the function of lncRNAs have just begun to be elucidated, the conditional regulation of lncRNAs remains largely unexplored. In genome-wide studies our group and others recently found hypoxic transcriptional induction of a subset of lncRNAs, whereof nuclear-enriched abundant/autosomal transcript 1 (NEAT1) and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) appear to be the lncRNAs most ubiquitously and most strongly induced by hypoxia in cultured cells. Hypoxia-inducible factor (HIF)-2 rather than HIF-1 seems to be the preferred transcriptional activator of these lncRNAs. For the first time, we also found strong induction primarily of MALAT1 in organs of mice exposed to inspiratory hypoxia. Most abundant hypoxic levels of MALAT1 lncRNA were found in kidney and testis. In situ hybridization revealed that the hypoxic induction in the kidney was confined to proximal rather than distal tubular epithelial cells. Direct oxygen-dependent regulation of MALAT1 lncRNA was confirmed using isolated primary kidney epithelial cells. In summary, high expression levels and acute, profound hypoxic induction of MALAT1 suggest a hitherto unrecognized role of this lncRNA in renal proximal tubular function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺氧小鼠长链非编码RNA MALAT1的诱导
长期以来被认为是“垃圾DNA”,近年来已经清楚地表明,相当一部分基因间基因组DNA实际上是转录的,形成长链非编码RNA (lncRNA)。与mRNA一样,lncRNA也可以被剪接、封帽和聚腺苷化,影响多种生物过程。虽然lncRNAs功能的分子机制刚刚开始被阐明,但lncRNAs的条件调控在很大程度上仍未被探索。在全基因组研究中,我们的研究小组和其他研究人员最近发现了缺氧转录诱导的一个lncRNAs亚群,其中核富集的富常染色体转录物1 (NEAT1)和转移相关肺腺癌转录物1 (MALAT1)似乎是培养细胞中最普遍和最强烈的lncRNAs。缺氧诱导因子(HIF)-2而不是HIF-1似乎是这些lncrna的首选转录激活因子。我们还首次发现,在吸入性缺氧小鼠的器官中,MALAT1主要被强烈诱导。低氧状态下MALAT1 lncRNA的表达水平在肾脏和睾丸中最为丰富。原位杂交显示肾缺氧诱导局限于近端而非远端小管上皮细胞。使用分离的原代肾上皮细胞证实了MALAT1 lncRNA的直接氧依赖性调节。总之,MALAT1的高表达水平和急性、深度缺氧诱导表明,该lncRNA在肾近端小管功能中的作用迄今尚未被认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Abstract IA-015: Hypoxia-induced SETX links replication stress with the unfolded protein response Abstract PO-033: Papaverine derivative smv-32 alleviates tumor hypoxia and radiosensitizes tumors by inhibiting mitochondrial metabolism Abstract PO-034: Changes in cancer associated fibroblast subsets following angiotensin II type I receptor blocker (ARB) treatment reduces transient hypoxia and radiation resistance Abstract IA-017: Chromatin and gene transcription in hypoxia Abstract IA-016: Metabolic deregulation drives a redox vulnerability in pancreatic cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1