Improvement of Rule Generation Methods for Fuzzy Controller

N. Mohammadkarimi, V. Derhami
{"title":"Improvement of Rule Generation Methods for Fuzzy Controller","authors":"N. Mohammadkarimi, V. Derhami","doi":"10.22044/JADM.2018.5593.1670","DOIUrl":null,"url":null,"abstract":"This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to improvement the above challenge. A zero order Sugeno fuzzy model used as fuzzy system structure. At first by using clustering obtains the number of rules and input membership functions. A set of candidate amounts for consequence parts of fuzzy rules is considered. Considering each pair of training data, according which rules fires and what is the output in the pair, the amount of probability of consequences candidates are change. In the next step, eligibility probability of each consequence candidate for all rules is determined. Finally, using these obtained probability, two probable outputs is generate for each input. The experimental results show superiority of the proposed approach rather than some available well-known approaches that makes reduce the number of rule and reduce system complexity.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2018.5593.1670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to improvement the above challenge. A zero order Sugeno fuzzy model used as fuzzy system structure. At first by using clustering obtains the number of rules and input membership functions. A set of candidate amounts for consequence parts of fuzzy rules is considered. Considering each pair of training data, according which rules fires and what is the output in the pair, the amount of probability of consequences candidates are change. In the next step, eligibility probability of each consequence candidate for all rules is determined. Finally, using these obtained probability, two probable outputs is generate for each input. The experimental results show superiority of the proposed approach rather than some available well-known approaches that makes reduce the number of rule and reduce system complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊控制器规则生成方法的改进
本文利用获得的数据提出了模糊建模方法。模糊系统被称为基于知识或基于规则的系统。模糊系统最重要的部分是规则库。用训练数据生成模糊规则的问题之一是数据不一致。训练数据中不一致和不确定状态的存在导致建模误差较大。在此,概率模糊系统提出了改进上述挑战的方法。采用零阶Sugeno模糊模型作为模糊系统结构。首先利用聚类方法获得规则个数和输入隶属函数。考虑了模糊规则结果部分的一组候选量。考虑每对训练数据,根据哪些规则被触发以及这对数据中的输出是什么,结果候选的概率是变化的。下一步,确定每个候选结果对所有规则的合格概率。最后,利用这些得到的概率,为每个输入生成两个可能的输出。实验结果表明,该方法在减少规则数量和降低系统复杂度方面优于现有的一些已知方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Nasal Breath Input: Exploring Nasal Breath Input Method for Hands-Free Input by Using a Glasses Type Device with Piezoelectric Elements Sentiment Mining and Analysis over Text Corpora via Complex Deep Learning Naural Architectures An Intelligent Model for Prediction of In-Vitro Fertilization Success using MLP Neural Network and GA Optimization Robust Vein Recognition against Rotation Using Kernel Sparse Representation Improving Speed and Efficiency of Dynamic Programming Methods through Chaos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1