GroupRank: Ranking Online Social Groups Based on User Membership Records

Ali Hashemi, M. Z. Chahooki
{"title":"GroupRank: Ranking Online Social Groups Based on User Membership Records","authors":"Ali Hashemi, M. Z. Chahooki","doi":"10.22044/JADM.2020.8337.1973","DOIUrl":null,"url":null,"abstract":"Social networks are valuable sources for marketers. Marketers can publish campaigns to reach target audiences according to their interest. Although Telegram was primarily designed as an instant messenger, it is used as a social network in Iran due to censorship of Facebook, Twitter, etc. Telegram neither provides a marketing platform nor the possibility to search among groups. It is difficult for marketers to find target audience groups in Telegram, hence we developed a system to fill the gap. Marketers use our system to find target audience groups by keyword search. Our system has to search and rank groups as relevant as possible to the search query. This paper proposes a method called GroupRank to improve the ranking of group searching. GroupRank elicits associative connections among groups based on membership records they have in common. After detailed analysis, five-group quality factors have been introduced and used in the ranking. Our proposed method combines TF-IDF scoring with group quality scores and associative connections among groups. Experimental results show improvement in many different queries.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2020.8337.1973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social networks are valuable sources for marketers. Marketers can publish campaigns to reach target audiences according to their interest. Although Telegram was primarily designed as an instant messenger, it is used as a social network in Iran due to censorship of Facebook, Twitter, etc. Telegram neither provides a marketing platform nor the possibility to search among groups. It is difficult for marketers to find target audience groups in Telegram, hence we developed a system to fill the gap. Marketers use our system to find target audience groups by keyword search. Our system has to search and rank groups as relevant as possible to the search query. This paper proposes a method called GroupRank to improve the ranking of group searching. GroupRank elicits associative connections among groups based on membership records they have in common. After detailed analysis, five-group quality factors have been introduced and used in the ranking. Our proposed method combines TF-IDF scoring with group quality scores and associative connections among groups. Experimental results show improvement in many different queries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
grou恶作剧:基于用户成员记录对在线社交组进行排名
社交网络是营销人员的宝贵资源。营销人员可以根据目标受众的兴趣发布广告活动。虽然Telegram最初是作为即时通讯工具设计的,但由于对Facebook、Twitter等的审查,它在伊朗被用作社交网络。Telegram既不提供营销平台,也不提供群组间搜索的可能性。营销人员很难在Telegram上找到目标受众群体,因此我们开发了一个系统来填补这一空白。营销人员使用我们的系统通过关键字搜索找到目标受众群体。我们的系统必须搜索并对与搜索查询尽可能相关的组进行排序。为了提高组搜索的排序,本文提出了一种名为grou恶作剧的方法。grou恶作剧根据组间共有的成员记录引出组间的关联连接。经过详细的分析,引入了五组质量因子,并将其用于排名。我们提出的方法将TF-IDF评分与群体质量评分和群体间的关联联系结合起来。实验结果表明,在许多不同的查询中都有改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Nasal Breath Input: Exploring Nasal Breath Input Method for Hands-Free Input by Using a Glasses Type Device with Piezoelectric Elements Sentiment Mining and Analysis over Text Corpora via Complex Deep Learning Naural Architectures An Intelligent Model for Prediction of In-Vitro Fertilization Success using MLP Neural Network and GA Optimization Robust Vein Recognition against Rotation Using Kernel Sparse Representation Improving Speed and Efficiency of Dynamic Programming Methods through Chaos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1