Experimental Investigation of Usability of Construction Waste as Aggregate

IF 1.1 Q3 MINING & MINERAL PROCESSING Journal of Mining and Environment Pub Date : 2021-01-01 DOI:10.22044/JME.2021.10309.1976
Gokhan Kulekci, A. Yılmaz, M. Çullu
{"title":"Experimental Investigation of Usability of Construction Waste as Aggregate","authors":"Gokhan Kulekci, A. Yılmaz, M. Çullu","doi":"10.22044/JME.2021.10309.1976","DOIUrl":null,"url":null,"abstract":"DOI:10.22044/jme.2021.10309.1976 The aim of this work is to obtain recycled aggregate (RA) from construction debris in order to reduce the rapid consumption of aggregate resources and the environmental impact of these resources. In order to fulfill this aim, the density, porosity, Schmidt hardness test, uniaxial compression resistance, carbonation depth, and ultrasonic pwave velocity experiments were conducted on different construction debris transported by trucks from 9 different points in Turkey. In addition, the debris samples taken were broken down to the size of the aggregate and subjected to the tests of density, porosity, moisture content, freeze-thaw, and impact resistance. As a result of the conducted experiments, the lowest mass loss as a result of freezing-thawing was in GRA with 9.36%, the highest mass loss was in ORA with 22.58%, the highest ORA average aggregate impact strength index was 21.27%, and the lowest TRA aggregate impact strength index was found to be 18.26%. İt was determined that most of the physical properties of RA obtained from the construction wreckage was within the limit values specified in the literature and that the recycled aggregates could be used instead of natural aggregate. With this work and these results, RA obtained could be used in many areas such as concrete aggregate in the construction sector, underground filling in mining, filling material in gunned concrete, and filling materials on highways. Keywords","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JME.2021.10309.1976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 5

Abstract

DOI:10.22044/jme.2021.10309.1976 The aim of this work is to obtain recycled aggregate (RA) from construction debris in order to reduce the rapid consumption of aggregate resources and the environmental impact of these resources. In order to fulfill this aim, the density, porosity, Schmidt hardness test, uniaxial compression resistance, carbonation depth, and ultrasonic pwave velocity experiments were conducted on different construction debris transported by trucks from 9 different points in Turkey. In addition, the debris samples taken were broken down to the size of the aggregate and subjected to the tests of density, porosity, moisture content, freeze-thaw, and impact resistance. As a result of the conducted experiments, the lowest mass loss as a result of freezing-thawing was in GRA with 9.36%, the highest mass loss was in ORA with 22.58%, the highest ORA average aggregate impact strength index was 21.27%, and the lowest TRA aggregate impact strength index was found to be 18.26%. İt was determined that most of the physical properties of RA obtained from the construction wreckage was within the limit values specified in the literature and that the recycled aggregates could be used instead of natural aggregate. With this work and these results, RA obtained could be used in many areas such as concrete aggregate in the construction sector, underground filling in mining, filling material in gunned concrete, and filling materials on highways. Keywords
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建筑垃圾集料可用性试验研究
这项工作的目的是从建筑碎片中获得再生骨料(RA),以减少骨料资源的快速消耗和这些资源对环境的影响。为了实现这一目标,对土耳其9个不同地点卡车运输的不同建筑碎片进行了密度、孔隙率、施密特硬度试验、单轴抗压性、碳化深度和超声波波速实验。此外,采集的碎片样品被分解成骨料的大小,并进行密度、孔隙率、含水率、冻融和抗冲击性测试。结果表明,冻融后的质量损失最小的是GRA,为9.36%,质量损失最大的是ORA,为22.58%,ORA平均骨料冲击强度指数最高为21.27%,TRA骨料冲击强度指数最低为18.26%。İt经确定,从建筑残骸中获得的RA的大部分物理特性都在文献中规定的极限值内,并且可以使用再生骨料代替天然骨料。通过这项工作和这些结果,所获得的RA可用于许多领域,如建筑部门的混凝土骨料,采矿的地下填充,喷枪混凝土的填充材料和高速公路的填充材料。关键字
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mining and Environment
Journal of Mining and Environment MINING & MINERAL PROCESSING-
CiteScore
1.90
自引率
25.00%
发文量
0
期刊最新文献
Fe3O4@TiO2@V2O5 as an efficient magnetic nanoparticle for synthesis of di-indolyl oxindole derivatives Propose a viable stabilization method for slope in weak rock mass environment using numerical modelling: A case study from the cut slopes Estimation of optimum geometric configuration of mine dumps in Wardha valley coalfields in India: a case study An investigation on tailing slurry transport in Kooshk lead-zinc mine in Iran based on non-Newtonian fluid rheology: an experimental study Carnallite Flotation of Khur Biabanak Potash Complex using kimiaflot 619 as a New Collector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1