NEONATOLOGY OF REPTILES

IF 1.1 2区 生物学 Q3 ZOOLOGY Herpetological Monographs Pub Date : 2000-01-01 DOI:10.2307/1467050
D. J. Morafka, E. Spangenberg, V. Lance
{"title":"NEONATOLOGY OF REPTILES","authors":"D. J. Morafka, E. Spangenberg, V. Lance","doi":"10.2307/1467050","DOIUrl":null,"url":null,"abstract":"Neonatal reptiles are here defined as an age class of young eureptilian amniotes (excluding birds) that express attributes most influenced by the pre-paritive development environ- ment (oviduct, egg, and egg nest) and by the demands of parition and first dispersal. Neonatal character states are typically transformed, reduced, or eliminated during the first 10% of their pre- reproductive development. Traditionally, neonates have not been distinguished from juvenile rep- tiles. As a result the neonatology of reptiles has rarely been addressed in past literature. Recent studies reveal a complex array of developmental scenarios involving character state transformations, heterochrony, unique character states in morphology, behavior, physiology, nutrition, dispersion and health. Unique morphological features (such as egg teeth) and limited skeletal ossification charac- terize many neonates. Distinguishing behaviors include \"reversal\" movements, utilization of bright color patterns, and startling movements with both serving as anti-predation mechanisms. Prolonged association with protective parents, group migration, unique agonistic behavior, and tendencies to- ward rapid dispersion characterize the neonates of individual species. Neonatal physiological attri- butes include: a special availability to inoculation by symbiont fermenting anaerobes in herbivores, rapid conforming responses to their external environments in thermal and hydric exchanges, and in the case of some turtles, extraordinary capacities for supercooling (8.9 C). Post-paritive lecithotrophy (nutrition from residual yolk) sustain both the overwintering of nestlings and the dispersion of non- feeding young for as long as several months. Resistance to infections (such as mycoplasmas) from their maternal parents, combine with nutritive reserves of residual yolk and a common tendency for rapid dispersion to make neonates attractive candidates for augmentation and translocation programs. Coupled with the practical advantages of maintaining and manipulating small animals in a laboratory environment, these qualities distinguish neonates as particularly useful models for ex- perimentally evaluating the relative apportionment of reproductive resources into greater numbers of offspring or into improved quality/survivorship of individual offspring.","PeriodicalId":56309,"journal":{"name":"Herpetological Monographs","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2307/1467050","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herpetological Monographs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2307/1467050","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 35

Abstract

Neonatal reptiles are here defined as an age class of young eureptilian amniotes (excluding birds) that express attributes most influenced by the pre-paritive development environ- ment (oviduct, egg, and egg nest) and by the demands of parition and first dispersal. Neonatal character states are typically transformed, reduced, or eliminated during the first 10% of their pre- reproductive development. Traditionally, neonates have not been distinguished from juvenile rep- tiles. As a result the neonatology of reptiles has rarely been addressed in past literature. Recent studies reveal a complex array of developmental scenarios involving character state transformations, heterochrony, unique character states in morphology, behavior, physiology, nutrition, dispersion and health. Unique morphological features (such as egg teeth) and limited skeletal ossification charac- terize many neonates. Distinguishing behaviors include "reversal" movements, utilization of bright color patterns, and startling movements with both serving as anti-predation mechanisms. Prolonged association with protective parents, group migration, unique agonistic behavior, and tendencies to- ward rapid dispersion characterize the neonates of individual species. Neonatal physiological attri- butes include: a special availability to inoculation by symbiont fermenting anaerobes in herbivores, rapid conforming responses to their external environments in thermal and hydric exchanges, and in the case of some turtles, extraordinary capacities for supercooling (8.9 C). Post-paritive lecithotrophy (nutrition from residual yolk) sustain both the overwintering of nestlings and the dispersion of non- feeding young for as long as several months. Resistance to infections (such as mycoplasmas) from their maternal parents, combine with nutritive reserves of residual yolk and a common tendency for rapid dispersion to make neonates attractive candidates for augmentation and translocation programs. Coupled with the practical advantages of maintaining and manipulating small animals in a laboratory environment, these qualities distinguish neonates as particularly useful models for ex- perimentally evaluating the relative apportionment of reproductive resources into greater numbers of offspring or into improved quality/survivorship of individual offspring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
爬行动物新生学
新生爬行动物在这里被定义为幼小的欧洲爬行动物羊膜动物(不包括鸟类)的一个年龄级别,其表现出的属性最受出生前发育环境(输卵管、卵和卵巢)以及分离和首次分散的需求的影响。新生儿的性格状态通常在其生殖前发育的前10%发生转变、减少或消除。传统上,新生儿并没有从青少年代表中区分出来。因此,爬行动物的新生儿学在过去的文献中很少被提及。最近的研究揭示了一系列复杂的发育情景,包括形态、行为、生理、营养、分散和健康方面的特征状态转换、异时性和独特的特征状态。独特的形态特征(如蛋齿)和有限的骨骼骨化是许多新生儿的特征。区别行为包括“反转”动作,使用明亮的颜色图案,以及惊人的动作,这两种动作都是反捕食机制。与保护性父母的长期联系,群体迁徙,独特的竞争行为,以及倾向于快速分散的趋势是单个物种的新生儿的特征。新生儿的生理特征包括:在食草动物中,通过共生发酵厌氧菌接种的特殊可用性,在热和水分交换中对外部环境的快速一致反应,以及在某些海龟的情况下,超常的过冷能力(8.9℃)。出生后的卵黄营养(来自残余蛋黄的营养)维持了雏鸟的越冬和不喂养的幼鸟的分散长达几个月。对来自母体的感染(如支原体)的抵抗力,加上剩余蛋黄的营养储备和快速分散的共同趋势,使新生儿成为增强和易位计划的有吸引力的候选人。再加上在实验室环境中饲养和操纵小动物的实际优势,这些特性使新生儿成为实验评估生殖资源相对分配到更多后代或提高个体后代质量/存活率的特别有用的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Herpetological Monographs
Herpetological Monographs 生物-动物学
CiteScore
5.40
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: Since 1982, Herpetological Monographs has been dedicated to original research about the biology, diversity, systematics and evolution of amphibians and reptiles. Herpetological Monographs is published annually as a supplement to Herpetologica and contains long research papers, manuscripts and special symposia that synthesize the latest scientific discoveries.
期刊最新文献
Hyperpredation of Freshwater Turtles and Tortoises by Subsidized Corvids A Contribution to the Systematics of Sunda Shelf Angle-Headed Dragons (Agamidae: Gonocephalus) with the Description of New Taxa from Sumatra Calling Frogs by Their Name: Long-Lasting Misidentification of Tetraploid Frogs of the Genus Odontophrynus (Anura: Odontophrynidae) Genus-specific and Habitat-dependent Plant Ingestion in West African Sabre-toothed Frogs (Anura, Odontobatrachidae: Odontobatrachus) Miniaturization in Direct-Developing Frogs from Mexico with the Description of Six New Species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1