{"title":"fastnet: An R Package for Fast Simulation and Analysis of Large-Scale Social Networks","authors":"Xu Dong, Luis E. Castro, N. I. Shaikh","doi":"10.2139/ssrn.3121725","DOIUrl":null,"url":null,"abstract":"Traditional tools and software for social network analysis are seldom scalable and/or fast. This paper provides an overview of an R package called fastnet, a tool for scaling and speeding up the simulation and analysis of large-scale social networks. fastnet uses multi-core processing and sub-graph sampling algorithms to achieve the desired scale-up and speed-up. Simple examples, usages, and comparisons of scale-up and speed-up as compared to other R packages, i.e., igraph and statnet, are presented.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"1 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2020-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2139/ssrn.3121725","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3
Abstract
Traditional tools and software for social network analysis are seldom scalable and/or fast. This paper provides an overview of an R package called fastnet, a tool for scaling and speeding up the simulation and analysis of large-scale social networks. fastnet uses multi-core processing and sub-graph sampling algorithms to achieve the desired scale-up and speed-up. Simple examples, usages, and comparisons of scale-up and speed-up as compared to other R packages, i.e., igraph and statnet, are presented.
期刊介绍:
The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.