Using artificial neural networks to predict thermal conductivity of pear juice

Z. Amiri, Hengameh Darzi Arbabi
{"title":"Using artificial neural networks to predict thermal conductivity of pear juice","authors":"Z. Amiri, Hengameh Darzi Arbabi","doi":"10.22067/IFSTRJ.V1394I6.50308","DOIUrl":null,"url":null,"abstract":"Thermal conductivity is an important property of juices in the prediction of heat- and mass-transfer coefficients and in the design of heat- and mass-transfer equipment for the fruit juice industry. An artificial neural network (ANN) was developed to predict thermal conductivity of pear juice. Temperature and concentration were input variables. Thermal conductivity of juices was outputs. The optimal ANN model consisted 2 hidden layers with 5 neurons in first hidden layer and the second one has only one neuron. The ANN model was able to predict thermal conductivity values which closely matched the experimental values by providing lowest mean square error (R2=0.999) compared to conventional and multivariable regression models. However this method also improves the problem of determining the hidden structure of the neural network layer by trial and error. It can be incorporated in heat transfer calculations during juices processing where temperature and concentration dependent thermal conductivity values are required.","PeriodicalId":52634,"journal":{"name":"mjlh pjwhshhy `lwm w Sny` Gdhyy yrn","volume":"11 1","pages":"770-778"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mjlh pjwhshhy `lwm w Sny` Gdhyy yrn","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22067/IFSTRJ.V1394I6.50308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Thermal conductivity is an important property of juices in the prediction of heat- and mass-transfer coefficients and in the design of heat- and mass-transfer equipment for the fruit juice industry. An artificial neural network (ANN) was developed to predict thermal conductivity of pear juice. Temperature and concentration were input variables. Thermal conductivity of juices was outputs. The optimal ANN model consisted 2 hidden layers with 5 neurons in first hidden layer and the second one has only one neuron. The ANN model was able to predict thermal conductivity values which closely matched the experimental values by providing lowest mean square error (R2=0.999) compared to conventional and multivariable regression models. However this method also improves the problem of determining the hidden structure of the neural network layer by trial and error. It can be incorporated in heat transfer calculations during juices processing where temperature and concentration dependent thermal conductivity values are required.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工神经网络预测梨汁的导热系数
热导率是果汁传热传质系数预测和果汁工业传热传质设备设计中的一个重要性质。利用人工神经网络(ANN)对梨汁的导热系数进行了预测。温度和浓度是输入变量。输出果汁的热导率。最优的人工神经网络模型由2个隐含层组成,第一隐含层有5个神经元,第二隐含层只有1个神经元。与常规模型和多变量回归模型相比,人工神经网络模型预测的导热系数值与实验值吻合较好,且均方误差最小(R2=0.999)。然而,该方法也改进了用试错法确定神经网络层隐藏结构的问题。它可以在果汁加工过程中的传热计算中纳入,其中需要温度和浓度相关的导热系数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
3
审稿时长
32 weeks
期刊最新文献
Investigation of the Coffea Arabica substitution with roasted date seed on Physicochemical and sensory properties of coffee brew Immunomodulatory effects of interferon-γ on human fetal cardiac mesenchymal stromal cells. اثر غلظتهای مختلف پکتین بر پایداری رنگ و آنتوسیانینهای زرشک سیاه(B. cratagina) در سیستم مدل پاستیل میوهای بررسی ضریب نفوذ مؤثر قندهای احیاءکننده و سینتیک تغییرات بافت خلال سیبزمینی طی آنزیمبری در آب داغ Synergistic effect of locust bean and xanthan gum on viability of probiotic bacteria and water holding capacity of synbiotic yogurt from camel milk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1