{"title":"A Bootstrapping Approach to Entity Linkage on the Semantic Web","authors":"Wei Hu, Cunxin Jia","doi":"10.2139/ssrn.3199193","DOIUrl":null,"url":null,"abstract":"In the Big Data era, ever-increasing RDF data have reached a scale in billions of entities and brought challenges to the problem of entity linkage on the Semantic Web. Although millions of entities, typically denoted by URIs, have been explicitly linked with owl:sameAs, potentially coreferent ones are still numerous. Existing automatic approaches address this problem mainly from two perspectives: one is via equivalence reasoning, which infers semantically coreferent entities but probably misses many potentials; the other is by similarity computation between property-values of entities, which is not always accurate and do not scale well. In this paper, we introduce a bootstrapping approach by leveraging these two kinds of methods for entity linkage. Given an entity, our approach first infers a set of semantically coreferent entities. Then, it iteratively expands this entity set using discriminative property-value pairs. The discriminability is learned with a statistical measure, which does not only identify important property-values in the entity set, but also takes matched properties into account. Frequent property combinations are also mined to improve linkage accuracy. We develop an online entity linkage search engine, and show its superior precision and recall by comparing with representative approaches on a large-scale and two benchmark datasets.","PeriodicalId":49951,"journal":{"name":"Journal of Web Semantics","volume":"30 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Semantics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2139/ssrn.3199193","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 18
Abstract
In the Big Data era, ever-increasing RDF data have reached a scale in billions of entities and brought challenges to the problem of entity linkage on the Semantic Web. Although millions of entities, typically denoted by URIs, have been explicitly linked with owl:sameAs, potentially coreferent ones are still numerous. Existing automatic approaches address this problem mainly from two perspectives: one is via equivalence reasoning, which infers semantically coreferent entities but probably misses many potentials; the other is by similarity computation between property-values of entities, which is not always accurate and do not scale well. In this paper, we introduce a bootstrapping approach by leveraging these two kinds of methods for entity linkage. Given an entity, our approach first infers a set of semantically coreferent entities. Then, it iteratively expands this entity set using discriminative property-value pairs. The discriminability is learned with a statistical measure, which does not only identify important property-values in the entity set, but also takes matched properties into account. Frequent property combinations are also mined to improve linkage accuracy. We develop an online entity linkage search engine, and show its superior precision and recall by comparing with representative approaches on a large-scale and two benchmark datasets.
期刊介绍:
The Journal of Web Semantics is an interdisciplinary journal based on research and applications of various subject areas that contribute to the development of a knowledge-intensive and intelligent service Web. These areas include: knowledge technologies, ontology, agents, databases and the semantic grid, obviously disciplines like information retrieval, language technology, human-computer interaction and knowledge discovery are of major relevance as well. All aspects of the Semantic Web development are covered. The publication of large-scale experiments and their analysis is also encouraged to clearly illustrate scenarios and methods that introduce semantics into existing Web interfaces, contents and services. The journal emphasizes the publication of papers that combine theories, methods and experiments from different subject areas in order to deliver innovative semantic methods and applications.