Effect of particle size of Y2O3-Al2O3 additives on microstructure and mechanical properties of Si3N4 ceramic balls for bearing applications

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Processing and Application of Ceramics Pub Date : 2021-01-01 DOI:10.2298/pac2103297z
Jing Zhang, Wenxue Wang, F. Sun, Weiru Zhang, Boheng Li, Ming-shuai Zhang
{"title":"Effect of particle size of Y2O3-Al2O3 additives on microstructure and mechanical properties of Si3N4 ceramic balls for bearing applications","authors":"Jing Zhang, Wenxue Wang, F. Sun, Weiru Zhang, Boheng Li, Ming-shuai Zhang","doi":"10.2298/pac2103297z","DOIUrl":null,"url":null,"abstract":"Si3N4 ceramic balls were prepared by gas pressure sintering with Y2O3 and Al2O3 as sintering additives. The effects of particle size of Y2O3-Al2O3 additives on densification, microstructure and mechanical properties of Si3N4 ceramic balls were investigated. The reliability of Si3N4 ceramic balls was evaluated through the Weibull modulus. The results showed that Si3N4 ceramic balls containing nanosized Y2O3-Al2O3 additives have a higher relative density and better comprehensivemechanical properties compared with the samples containing microsized additives, with relative density of 98.9 ? 0.2%TD, Vickers hardness of 14.7 ? 0.1GPa, indentation fracture toughness of 6.5 ? 0.1MPa?m1/2 and crushing strength of 254 ? 8.5MPa. The more homogeneous and extensive dispersion of the nanosized sintering additives in the Si3N4 matrix is the main reason for the enhancement in density and mechanical properties of the Si3N4 ceramic balls.","PeriodicalId":20596,"journal":{"name":"Processing and Application of Ceramics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processing and Application of Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/pac2103297z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 1

Abstract

Si3N4 ceramic balls were prepared by gas pressure sintering with Y2O3 and Al2O3 as sintering additives. The effects of particle size of Y2O3-Al2O3 additives on densification, microstructure and mechanical properties of Si3N4 ceramic balls were investigated. The reliability of Si3N4 ceramic balls was evaluated through the Weibull modulus. The results showed that Si3N4 ceramic balls containing nanosized Y2O3-Al2O3 additives have a higher relative density and better comprehensivemechanical properties compared with the samples containing microsized additives, with relative density of 98.9 ? 0.2%TD, Vickers hardness of 14.7 ? 0.1GPa, indentation fracture toughness of 6.5 ? 0.1MPa?m1/2 and crushing strength of 254 ? 8.5MPa. The more homogeneous and extensive dispersion of the nanosized sintering additives in the Si3N4 matrix is the main reason for the enhancement in density and mechanical properties of the Si3N4 ceramic balls.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Y2O3-Al2O3添加剂粒径对轴承用Si3N4陶瓷球组织和力学性能的影响
以Y2O3和Al2O3为烧结助剂,采用气压烧结法制备了Si3N4陶瓷球。研究了Y2O3-Al2O3添加剂粒径对Si3N4陶瓷球致密化、显微组织和力学性能的影响。通过威布尔模量对Si3N4陶瓷球的可靠性进行了评价。结果表明:纳米级Y2O3-Al2O3添加物的Si3N4陶瓷球相对于微级Y2O3-Al2O3添加物具有更高的相对密度和更好的综合力学性能,相对密度为98.9 ?0.2%TD,维氏硬度为14.7 ?0.1GPa,压痕断裂韧性6.5 ?0.1 mpa ?M1/2,抗压强度为254 ?8.5 mpa。纳米烧结添加剂在Si3N4基体中的分散更加均匀和广泛,是提高Si3N4陶瓷球密度和力学性能的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Processing and Application of Ceramics
Processing and Application of Ceramics MATERIALS SCIENCE, CERAMICS-
CiteScore
1.90
自引率
9.10%
发文量
14
审稿时长
10 weeks
期刊介绍: Information not localized
期刊最新文献
Viscosity optimisation of photosensitive al2o3 slurry for stereolithography based additive manufacturing Comments on the paper “Structure, electric and dielectric properties of PbFe1/3Ti1/3W1/3O3 single perovskite compound” by P.G.R. Achary, R.N.P. Choudhary, S.K. Parida, published in Processing and Application of Ceramics 14 (2020) 146-153 Theoretical prediction by DFT on properties of β′-SrTa2O6 crystal Production of tib2 coatings on graphite substrates by electrophoretic deposition in NaF-AlF3 melt Use of cobalt ferrite and activated carbon in supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1