Microstructure and mechanical properties of b4c-tib2 composites reactive sintered from B4C + TiO2 precursors

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Processing and Application of Ceramics Pub Date : 2022-01-01 DOI:10.2298/pac2204358s
P. Švec, Ľ. Čaplovič
{"title":"Microstructure and mechanical properties of b4c-tib2 composites reactive sintered from B4C + TiO2 precursors","authors":"P. Švec, Ľ. Čaplovič","doi":"10.2298/pac2204358s","DOIUrl":null,"url":null,"abstract":"Ceramic composites consisting of a boron carbide (B4C) matrix and titanium diboride (TiB2) secondary phase were obtained by reactive sintering from boron carbide powder with 40 and 50wt.% of titanium dioxide (TiO2) additive. The same sintering temperature of 1850?C and pressure of 35MPa, but different sintering times from 15 to 60min, were applied during reactive hot pressing of the composites in vacuum. The effects of TiO2 content and sintering time on phase compositions, microstructures and mechanical properties of the composites were studied. The TiO2 additive enhanced densification of the B4C-TiB2 ceramic composites. Both Vickers hardness and the fracture toughness of the composites increased with prolongation of sintering time. The highest hardness of 29.8GPa was achieved for the composite with 29.6 vol.% of TiB2 obtained by sintering of the precursor with 40wt.% of TiO2 additive for 60min. The fracture toughness reached a maximum value of 7.5MPa?m1/2 for the composite containing 40.2 vol.% of TiB2, which was fabricated by reactive sintering of the precursor with 50wt.% of TiO2 additive for 60min.","PeriodicalId":20596,"journal":{"name":"Processing and Application of Ceramics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processing and Application of Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/pac2204358s","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ceramic composites consisting of a boron carbide (B4C) matrix and titanium diboride (TiB2) secondary phase were obtained by reactive sintering from boron carbide powder with 40 and 50wt.% of titanium dioxide (TiO2) additive. The same sintering temperature of 1850?C and pressure of 35MPa, but different sintering times from 15 to 60min, were applied during reactive hot pressing of the composites in vacuum. The effects of TiO2 content and sintering time on phase compositions, microstructures and mechanical properties of the composites were studied. The TiO2 additive enhanced densification of the B4C-TiB2 ceramic composites. Both Vickers hardness and the fracture toughness of the composites increased with prolongation of sintering time. The highest hardness of 29.8GPa was achieved for the composite with 29.6 vol.% of TiB2 obtained by sintering of the precursor with 40wt.% of TiO2 additive for 60min. The fracture toughness reached a maximum value of 7.5MPa?m1/2 for the composite containing 40.2 vol.% of TiB2, which was fabricated by reactive sintering of the precursor with 50wt.% of TiO2 additive for 60min.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
B4C + TiO2前驱体反应烧结B4C -tib2复合材料的微观结构和力学性能
以40wt和50wt的碳化硼粉为原料,通过反应烧结制备了碳化硼(B4C)基体和二硼化钛(TiB2)次级相的陶瓷复合材料。%的二氧化钛(TiO2)添加剂。还是1850年的烧结温度?在真空反应热压条件下,采用温度为C、压力为35MPa、烧结时间为15 ~ 60min等条件对复合材料进行反应热压。研究了TiO2含量和烧结时间对复合材料相组成、显微组织和力学性能的影响。TiO2添加剂增强了B4C-TiB2陶瓷复合材料的致密性。复合材料的维氏硬度和断裂韧性随烧结时间的延长而增加。当TiB2体积分数为29.6 vol.%时,复合材料的硬度最高,达到29.8GPa。%的TiO2添加剂作用60min。断裂韧性达到最大值7.5MPa?用50wt的前驱体反应烧结制备了TiB2含量为40.2 vol.%的复合材料。%的TiO2添加剂作用60min。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Processing and Application of Ceramics
Processing and Application of Ceramics MATERIALS SCIENCE, CERAMICS-
CiteScore
1.90
自引率
9.10%
发文量
14
审稿时长
10 weeks
期刊介绍: Information not localized
期刊最新文献
Viscosity optimisation of photosensitive al2o3 slurry for stereolithography based additive manufacturing Comments on the paper “Structure, electric and dielectric properties of PbFe1/3Ti1/3W1/3O3 single perovskite compound” by P.G.R. Achary, R.N.P. Choudhary, S.K. Parida, published in Processing and Application of Ceramics 14 (2020) 146-153 Theoretical prediction by DFT on properties of β′-SrTa2O6 crystal Production of tib2 coatings on graphite substrates by electrophoretic deposition in NaF-AlF3 melt Use of cobalt ferrite and activated carbon in supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1