Low-rank tensor completion using nonconvex total variation

S. Mohaoui, K. EL Qate, A. Hakim, S. Raghay
{"title":"Low-rank tensor completion using nonconvex total variation","authors":"S. Mohaoui, K. EL Qate, A. Hakim, S. Raghay","doi":"10.23939/mmc2022.02.365","DOIUrl":null,"url":null,"abstract":"In this work, we study the tensor completion problem in which the main point is to predict the missing values in visual data. To greatly benefit from the smoothness structure and edge-preserving property in visual images, we suggest a tensor completion model that seeks gradient sparsity via the l0-norm. The proposal combines the low-rank matrix factorization which guarantees the low-rankness property and the nonconvex total variation (TV). We present several experiments to demonstrate the performance of our model compared with popular tensor completion methods in terms of visual and quantitative measures.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2022.02.365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study the tensor completion problem in which the main point is to predict the missing values in visual data. To greatly benefit from the smoothness structure and edge-preserving property in visual images, we suggest a tensor completion model that seeks gradient sparsity via the l0-norm. The proposal combines the low-rank matrix factorization which guarantees the low-rankness property and the nonconvex total variation (TV). We present several experiments to demonstrate the performance of our model compared with popular tensor completion methods in terms of visual and quantitative measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用非凸总变分的低秩张量补全
本文研究了张量补全问题,其重点是预测视觉数据中的缺失值。为了充分利用视觉图像的平滑结构和边缘保持特性,我们提出了一种通过10范数寻求梯度稀疏的张量补全模型。该方法将保证低秩性的低秩矩阵分解与非凸总变分(TV)相结合。我们提出了几个实验来证明我们的模型在视觉和定量测量方面与流行的张量补全方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
期刊最新文献
Analytical images of Kepler's equation solutions and their applications Fractional Brownian motion in financial engineering models Multi-criteria decision making based on novel distance measure in intuitionistic fuzzy environment Stability analysis of a fractional model for the transmission of the cochineal Modeling the financial flows impact on the diagnosis of an enterprise's economic security level
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1